Prashant Kumar Singh
Council of Scientific and Industrial Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Prashant Kumar Singh.
Human Genetics | 2005
Samir K. Brahmachari; Lalji Singh; Abhay Sharma; Mitali Mukerji; Kunal Ray; Susanta Roychoudhury; Giriraj R. Chandak; Kumarasamy Thangaraj; Saman Habib; Devendra Parmar; Partha P. Majumder; Shantanu Sengupta; Dwaipayan Bharadwaj; Debasis Dash; Srikanta Kumar Rath; R. Shankar; Jagmohan Singh; Komal Virdi; Samira Bahl; V. R. Rao; Swapnil Sinha; Ashok K. Singh; Amit Mitra; Shrawan K. Mishra; B. R K Shukla; Qadar Pasha; Souvik Maiti; Amitabh Sharma; Jitender Kumar; Aarif Ahsan
Indian population, comprising of more than a billion people, consists of 4693 communities with several thousands of endogamous groups, 325 functioning languages and 25 scripts. To address the questions related to ethnic diversity, migrations, founder populations, predisposition to complex disorders or pharmacogenomics, one needs to understand the diversity and relatedness at the genetic level in such a diverse population. In this backdrop, six constituent laboratories of the Council of Scientific and Industrial Research (CSIR), with funding from the Government of India, initiated a network program on predictive medicine using repeats and single nucleotide polymorphisms. The Indian Genome Variation (IGV) consortium aims to provide data on validated SNPs and repeats, both novel and reported, along with gene duplications, in over a thousand genes, in 15,000 individuals drawn from Indian subpopulations. These genes have been selected on the basis of their relevance as functional and positional candidates in many common diseases including genes relevant to pharmacogenomics. This is the first large-scale comprehensive study of the structure of the Indian population with wide-reaching implications. A comprehensive platform for Indian Genome Variation (IGV) data management, analysis and creation of IGVdb portal has also been developed. The samples are being collected following ethical guidelines of Indian Council of Medical Research (ICMR) and Department of Biotechnology (DBT), India. This paper reveals the structure of the IGV project highlighting its various aspects like genesis, objectives, strategies for selection of genes, identification of the Indian subpopulations, collection of samples and discovery and validation of genetic markers, data analysis and monitoring as well as the project’s data release policy.Indian population, comprising of more than a billion people, consists of 4693 communities with several thousands of endogamous groups, 325 functioning languages and 25 scripts. To address the questions related to ethnic diversity, migrations, founder populations, predisposition to complex disorders or pharmacogenomics, one needs to understand the diversity and relatedness at the genetic level in such a diverse population. In this backdrop, six constituent laboratories of the Council of Scientific and Industrial Research (CSIR), with funding from the Government of India, initiated a network program on predictive medicine using repeats and single nucleotide polymorphisms. The Indian Genome Variation (IGV) consortium aims to provide data on validated SNPs and repeats, both novel and reported, along with gene duplications, in over a thousand genes, in 15,000 individuals drawn from Indian subpopulations. These genes have been selected on the basis of their relevance as functional and positional candidates in many common diseases including genes relevant to pharmacogenomics. This is the first large-scale comprehensive study of the structure of the Indian population with wide-reaching implications. A comprehensive platform for Indian Genome Variation (IGV) data management, analysis and creation of IGVdb portal has also been developed. The samples are being collected following ethical guidelines of Indian Council of Medical Research (ICMR) and Department of Biotechnology (DBT), India. This paper reveals the structure of the IGV project highlighting its various aspects like genesis, objectives, strategies for selection of genes, identification of the Indian subpopulations, collection of samples and discovery and validation of genetic markers, data analysis and monitoring as well as the project’s data release policy.
Pharmacogenomics | 2009
Meenal Gupta; Chitra Chauhan; Pallav Bhatnagar; Simone Gupta; Sandeep Grover; Prashant Kumar Singh; Meera Purushottam; Odity Mukherjee; Sanjeev Jain; Samir K. Brahmachari; Ritushree Kukreti
AIM We investigated 16 polymorphisms from three genes, dopamine receptor D2 (DRD2), catechol-O-methyl transferase (COMT) and brain derived neurotrophic factor (BDNF), which are involved in the dopaminergic pathways, and have been reported to be associated with susceptibility to schizophrenia and response to antipsychotic therapy. MATERIALS & METHODS Single-locus association analyses of these polymorphisms were carried out in 254 patients with schizophrenia and 225 controls, all of southern Indian origin. Additionally, multifactor-dimensionality reduction analysis was performed in 422 samples (243 cases and 179 controls) to examine the gene-gene interactions and to identify combinations of multilocus genotypes associated with either high or low risk for the disease. RESULTS Our results demonstrated initial significant associations of two SNPs for DRD2 (rs11608185, genotype: chi(2) = 6.29, p-value = 0.043; rs6275, genotype: chi(2) = 8.91, p-value = 0.011), and one SNP in the COMT gene (rs4680, genotype: chi(2) = 6.67, p-value = 0.035 and allele: chi(2) = 4.75, p-value = 0.029; odds ratio: 1.33, 95% confidence interval: 1.02-1.73), but not after correction for multiple comparisons indicating a weak association of individual markers of DRD2 and COMT with schizophrenia. Multifactor-dimensionality reduction analysis suggested a two locus model (rs6275/DRD2 and rs4680/COMT) as the best model for gene-gene interaction with 90% cross-validation consistency and 42.42% prediction error in predicting disease risk among schizophrenia patients. CONCLUSION The present study thus emphasizes the need for multigene interaction studies in complex disorders such as schizophrenia and to understand response to drug treatment, which could lead to a targeted and more effective treatment.
Immunobiology | 2008
Sohal Js; S.V. Singh; P. Tyagi; Swati Subhodh; Prashant Kumar Singh; A.V. Singh; Krishnamoorthy Narayanasamy; Neelam Sheoran; Komal Singh Sandhu
The interplay between mycobacteria and host determines the outcome of infection. After uptake of mycobacteria by macrophages, several possible scenarios may emerge; mycobacteria may be destroyed immediately or there is establishment of persistent infection. This review is focused around mycobacteria-host interactions with reference to Mycobacterium avium subspecies paratuberculosis (MAP) infection and highlights protective mechanisms involved in order to design vaccines and other control strategies.
Vaccine | 2012
Susheela Kushwaha; Saptarshi Roy; Rita Maity; Asish Mallick; Vishal Soni; Prashant Kumar Singh; Narayan Das Chaurasiya; Rajender S. Sangwan; Shailja Misra-Bhattacharya; Chitra Mandal
Withania somnifera (Ashwagandha) is a plant with known ethnomedicinal properties and its use in Ayurvedic medicine in India is well documented. The present investigation reports on immunomodulatory efficacy of aqueous-ethanol extracts of roots of three selected Withania somnifera chemotypes designated as NMITLI 101R, NMITLI 118R and NMITLI 128R. Each chemotype was administered 10-100 mg/kg orally to BALB/c mice once daily for 14 days. The immunomodulatory consequences were recorded by determining the humoral immune response with the help of hemagglutination, plaque forming cell assay and cellular response by measuring delayed type hypersensitivity reaction. Additionally, other immune parameters such as proliferation of T and B cells, intracellular and secreted Th1 and Th2 cytokines along with modulation in ROS production by peritoneal macrophages were monitored after feeding with lower doses (3-30 mg/kg/day) of these three chemotypes individually. NMITLI 101R incited both humoral and cellular immune response in terms of higher number of antibody producing cells and enhanced foot pad swelling at the 10mg dose as also dose dependent B and T cell proliferations. Levels of intracellular and secreted cytokines post-NMITLI 101R treatment illustrated generation of mixed Th1/Th2 response that remained more polarized towards Th1. This chemotype also generated maximum reactive oxygen species. NMITLI 118R provoked comparatively reduced immune response in all humoral and cellular parameters at lower doses but induced highly polarized Th1 cytokine response. In contrast, NMITLI 128R led to enhanced antibody production with minimal cellular response demonstrating marginally Th2 dominance at a lower dose. Taken together, it may therefore be concluded that there were distinct modulation in the immune response exhibited by the three chemotypes of Withania somnifera and NMITLI 101R appeared to possess a better immunostimulatory activity than the other chemotypes at lower doses.
Infection, Genetics and Evolution | 2012
Pankaj Jha; Swapnil Sinha; Kanika Kanchan; Tabish Qidwai; Ankita Narang; Prashant Kumar Singh; Sudhanshu S. Pati; Sanjib Mohanty; Saroj K. Mishra; Surya K. Sharma; Shally Awasthi; Vimala Venkatesh; Sanjeev Jain; Analabha Basu; Shuhua Xu; Mitali Mukerji; Saman Habib
APOBEC3B, a gene involved in innate response, exhibits insertion-deletion polymorphism across world populations. We observed the insertion allele to be nearly fixed in malaria endemic regions of sub-Saharan Africa as well as populations with high malaria incidence in the past. This prompted us to investigate the possible association of the polymorphism with falciparum malaria. We studied the distribution of APOBEC3B, in 25 diverse Indian populations comprising of 500 samples and 176 severe or non-severe Plasmodium falciparum patients and 174 ethnically-matched uninfected individuals from a P. falciparum endemic and a non-endemic region of India. The deletion frequencies ranged from 0% to 43% in the Indian populations. The frequency of the insertion allele strikingly correlated with the endemicity map of P. falciparum malaria in India. A strong association of the deletion allele with susceptibility to falciparum malaria in the endemic region (non-severe vs. control, Odds ratio=4.96, P value=9.5E(-06); severe vs. control, OR=4.36, P value=5.76E(-05)) was observed. Although the frequency of deletion allele was higher in the non-endemic region, there was a significant association of the homozygous deletion genotype with malaria (OR=3.17, 95% CI=1.10-10.32, P value=0.0177). Our study also presents a case for malaria as a positive selection force for the APOBEC3B insertion and suggests a major role for this gene in innate immunity against malaria.
Future Medicinal Chemistry | 2010
Prashant Kumar Singh; Arya Ajay; Susheela Kushwaha; Rama Pati Tripathi; Shailja Misra-Bhattacharya
Filariasis is caused by thread-like nematode worms, classified according to their presence in the vertebrate host. The cutaneous group includes Onchocerca volvulus, Loa loa and Mansonella streptocerca; the lymphatic group includes Wuchereria bancrofti, Brugia malayi and Brugia timori and the body cavity group includes Mansonella perstans and Mansonella ozzardi. Lymphatic filariasis, a mosquito-borne disease, is one of the most prevalent diseases in tropical and subtropical countries and is accompanied by a number of pathological conditions. In recent years, there has been rapid progress in filariasis research, which has provided new insights into the pathogenesis of filarial disease, diagnosis, chemotherapy, the host-parasite relationship and the genomics of the parasite. Together, these insights are assisting the identification of novel drug targets and the discovery of antifilarial agents and candidate vaccine molecules. This review discusses the antifilarial activity of various chemical entities, the merits and demerits of antifilarial drugs currently in use, their mechanisms of action, in addition to antifilarial drug targets and their validation.
Parasite Immunology | 2012
Susheela Kushwaha; Vishal Soni; Prashant Kumar Singh; N. Bano; Anil Kumar; R. S. Sangwan; S. Misra-Bhattacharya
Withania somnifera is an ayurvedic Indian medicinal plant whose immunomodulatory activities have been widely used as a home remedy for several ailments. We recently observed immunostimulatory properties in the root extracts of chemotypes NMITLI‐101, NMITLI‐118, NMITLI‐128 and pure withanolide, withaferin A. In the present study, we evaluated the potential immunoprophylactic efficacies of these extracts against an infective pathogen. Our results show that administration of aqueous ethanol extracts (10 mg/kg) and withaferin A (0·3 mg/kg), 7 days before and after challenge with human filarial parasite Brugia malayi, offers differential protection in Mastomys coucha with chemotype 101R offering best protection (53·57%) as compared to other chemotypes. Our findings also demonstrate that establishment of B. malayi larvae was adversely affected by pretreatment with withaferin A as evidenced by 63·6% reduction in adult worm establishment. Moreover, a large percentage of the established female worms (66·2%) also showed defective embryogenesis. While the filaria‐specific immunological response induced by withaferin A and NMITLI‐101 showed a mixed Th1/Th2 phenotype, 118R stimulated production of IFN‐γ and 128R increased levels of IL‐4. Taken together, our findings reveal potential immunoprophylactic properties of W. somnifera, and further studies are needed to ascertain the benefits of this plant against other pathogens as well.
Microbes and Infection | 2012
Susheela Kushwaha; Prashant Kumar Singh; Jyoti Gupta; Vishal Soni; Shailja Misra-Bhattacharya
Trehalose-6-phosphate phosphatase of Brugia malayi (Bm-TPP) represents an attractive vaccine candidate because it is present in all the major life stages of parasite, but is absent in mammals. We have previously cloned, purified and biochemically characterized Bm-TPP. In the present study, we investigated the cross-reactivity of recombinant Bm-TPP (r-Bm-TPP) with the sera of human bancroftian patients belonging to different disease categories. In silico study using bioinformatics tool demonstrated that Bm-TPP is highly immunogenic in nature. BALB/c mice administered with r-Bm-TPP alone or in combination with Freunds complete adjuvant (FCA) generated a strong IgG response. Further investigations on the antibody isotypes showed generation of a mixed T helper cell response which was marginally biased towards Th1 phenotype. r-Bm-TPP with or without adjuvant lead to significantly increased accumulation of CD4+ and CD8+ T cells in the spleen of infected mice and increased the activation of peritoneal macrophages. Additionally, r-Bm-TPP enhanced the production of both proinflammatory (IL-2, IFN-γ) and anti-inflammatory (IL-4, IL-10) cytokines and mice immunized with r-Bm-TPP alone or in combination with FCA showed 54.5% and 67% protection respectively against B. malayi infective larvae challenge. Taken together, our findings suggest that Bm-TPP is protective in nature and might be a potential candidate for development of vaccine against lymphatic filarial infections.
BioMed Research International | 2014
Prashant Kumar Singh; Susheela Kushwaha; Ajay Kumar Rana; Shailja Misra-Bhattacharya
Lymphatic filariasis is a major debilitating disease, endemic in 72 countries putting more than 1.39 billion people at risk and 120 million are already infected. Despite the significant progress in chemotherapeutic advancements, there is still need for other measures like development of an effective vaccine or discovery of novel drug targets. In this study, structural and immunological characterization of independent phosphoglycerate mutase of filarial parasite Brugia malayi was carried out. Protein was found to be expressed in all major parasite life stages and as an excretory secretory product of adult parasites. Bm-iPGM also reacted to all the categories of human bancroftian patients sera including endemic normals. In vivo immunological behaviour of protein was determined in immunized BALB/c mice followed by prophylactic analysis in BALB/c mice and Mastomys coucha. Immunization with Bm-iPGM led to generation of a mixed Th1/Th2 type immune response offering 58.2% protection against larval challenge in BALB/c and 65–68% protection in M. coucha. In vitro studies confirmed participation of anti-Bm-iPGM antibodies in killing of B. malayi infective larvae and microfilariae through ADCC mechanism. The present findings reveal potential immunoprotective nature of Bm-iPGM advocating its worth as an antifilarial vaccine candidate.
AIP Conference Proceedings | 2018
Prashant Kumar Singh; Rohan Nakra; B. Sivaiah; Sanjay K. Sardana; P. Prathap; C.M.S. Rauthan; Sanjay K. Srivastava
This study reports effect of co-solvent doping in poly (3, 4-ethyelenedioxythiophene):poly(dimethyl sulfoxide) (PEDOT:PSS) over the performance of Ag/PEDOT:PSS/µT-n-Si/In:Ga architecture based solar cell. PEDOT:PSS polymer is doped with varying concentration of ethylene glycol (EG). At 10% (volume) concentration performance of the device is highest with 4.69% power conversion efficiency. At higher or lower concentrations of ethylene glycol device performance deteriorates with sharp decline in short-circuit current density. Improvement in conductivity of the PEDOT:PSS polymer due to addition of co-solvent is the reason behind improvement in the performance of the device efficiency.