Prashant M. Bhatt
King Abdullah University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Prashant M. Bhatt.
Science | 2016
Amandine Cadiau; Karim Adil; Prashant M. Bhatt; Youssef Belmabkhout; Mohamed Eddaoudi
Separating one organic from another Separating closely related organic molecules is a challenge (see the Perspective by Lin).The separation of acetylene from ethylene is needed in high-purity polymer production. Cui et al. developed a copper-based metal-organic framework with hexafluorosilicate and organic linkers designed to have a high affinity for acetylene. These materials, which capture four acetylene molecules in each pore, successfully separated acetylene from mixtures with ethylene. Propane and propylene are both important feedstock chemicals. Their physical and chemical similarity, however, requires energy-intense processes to separate them. Cadiau et al. designed a fluorinated porous metal-organic framework material that selectively adsorbed propylene, with the complete exclusion of propane. Science, this issue pp. 141 and 137; see also p. 121 A tailored metal-organic framework material is able to separate propane from propylene. The chemical industry is dependent on the olefin/paraffin separation, which is mainly accomplished by using energy-intensive processes. We report the use of reticular chemistry for the fabrication of a chemically stable fluorinated metal-organic framework (MOF) material (NbOFFIVE-1-Ni, also referred to as KAUST-7). The bridging of Ni(II)-pyrazine square-grid layers with (NbOF5)2– pillars afforded the construction of a three-dimensional MOF, enclosing a periodic array of fluoride anions in contracted square-shaped channels. The judiciously selected bulkier (NbOF5)2– caused the looked-for hindrance of the previously free-rotating pyrazine moieties, delimiting the pore system and dictating the pore aperture size and its maximum opening. The restricted MOF window resulted in the selective molecular exclusion of propane from propylene at atmospheric pressure, as evidenced through multiple cyclic mixed-gas adsorption and calorimetric studies.
Journal of the American Chemical Society | 2015
Dalal Alezi; Youssef Belmabkhout; Mikhail Suyetin; Prashant M. Bhatt; Łukasz J. Weseliński; Vera Solovyeva; Karim Adil; Ioannis Spanopoulos; Pantelis N. Trikalitis; Abdul-Hamid Emwas; Mohamed Eddaoudi
The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal-organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm(3) (STP)/cm(3) (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions.
Angewandte Chemie | 2015
Ayalew H. Assen; Youssef Belmabkhout; Karim Adil; Prashant M. Bhatt; Dong-Xu Xue; Hao Jiang; Mohamed Eddaoudi
Using isoreticular chemistry allows the design and construction of a new rare-earth metal (RE) fcu-MOF with a suitable aperture size for practical steric adsorptive separations. The judicious choice of a relatively short organic building block, namely fumarate, to bridge the 12-connected RE hexanuclear clusters has afforded the contraction of the well-defined RE-fcu-MOF triangular window aperture, the sole access to the two interconnected octahedral and tetrahedral cages. The newly constructed RE (Y(3+) and Tb(3+)) fcu-MOF analogues display unprecedented total exclusion of branched paraffins from normal paraffins. The resultant window aperture size of about 4.7 Å, regarded as a sorbate-size cut-off, enabled a complete sieving of branched paraffins from normal paraffins. The results are supported by collective single gas and mixed gas/vapor adsorption and calorimetric studies.
Journal of the American Chemical Society | 2016
Prashant M. Bhatt; Youssef Belmabkhout; Amandine Cadiau; Karim Adil; Osama Shekhah; Aleksander Shkurenko; Leonard J. Barbour; Mohamed Eddaoudi
The development of functional solid-state materials for carbon capture at low carbon dioxide (CO2) concentrations, namely, from confined spaces (<0.5%) and in particular from air (400 ppm), is of prime importance with respect to energy and environment sustainability. Herein, we report the deliberate construction of a hydrolytically stable fluorinated metal-organic framework (MOF), NbOFFIVE-1-Ni, with the appropriate pore system (size, shape, and functionality), ideal for the effective and energy-efficient removal of trace carbon dioxide. Markedly, the CO2-selective NbOFFIVE-1-Ni exhibits the highest CO2 gravimetric and volumetric uptake (ca. 1.3 mmol/g and 51.4 cm(3) (STP) cm(-3)) for a physical adsorbent at 400 ppm of CO2 and 298 K. Practically, NbOFFIVE-1-Ni offers the complete CO2 desorption at 328 K under vacuum with an associated moderate energy input of 54 kJ/mol, typical for the full CO2 desorption in conventional physical adsorbents but considerably lower than chemical sorbents. Noticeably, the contracted square-like channels, affording the close proximity of the fluorine centers, permitted the enhancement of the CO2-framework interactions and subsequently the attainment of an unprecedented CO2 selectivity at very low CO2 concentrations. The precise localization of the adsorbed CO2 at the vicinity of the periodically aligned fluorine centers, promoting the selective adsorption of CO2, is evidenced by the single-crystal X-ray diffraction study on NbOFFIVE-1-Ni hosting CO2 molecules. Cyclic CO2/N2 mixed-gas column breakthrough experiments under dry and humid conditions corroborate the excellent CO2 selectivity under practical carbon capture conditions. Pertinently, the notable hydrolytic stability positions NbOFFIVE-1-Ni as the new benchmark adsorbent for direct air capture and CO2 removal from confined spaces.
Science | 2017
Amandine Cadiau; Youssef Belmabkhout; Karim Adil; Prashant M. Bhatt; Renjith S. Pillai; Aleksander Shkurenko; Charlotte Martineau-Corcos; Guillaume Maurin; Mohamed Eddaoudi
Drying natural gas efficiently Natural gas must be purified before it can be transported. The preparation process also includes a drying step to remove water. Microporous adsorbents such as zeolites are used for this purpose, but they often need to be heated to temperatures up to 250°C to remove the water so that they can be reused. Cadiau et al. describe a fluorinated metal-organic framework containing nickel metal centers that can remove water from gas streams but that can be regenerated by heating to only 105°C. Science, this issue p. 731 A microporous material preferentially adsorbs water over the other components in natural gas and can release it at 105°C. Natural gas must be dehydrated before it can be transported and used, but conventional drying agents such as activated alumina or inorganic molecular sieves require an energy-intensive desiccant-regeneration step. We report a hydrolytically stable fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas streams containing CO2, N2, CH4, and higher hydrocarbons typical of natural gas, as well as selectively removed both H2O and CO2 in N2-containing streams. The complete desorption of the adsorbed water molecules contained by the AlFFIVE-1-Ni sorbent requires relatively moderate temperature (~105°C) and about half the energy input for commonly used desiccants.
Journal of the American Chemical Society | 2017
Rasha G. AbdulHalim; Prashant M. Bhatt; Youssef Belmabkhout; Aleksander Shkurenko; Karim Adil; Leonard J. Barbour; Mohamed Eddaoudi
Conventional adsorbents, namely zeolites and silica gel, are often used to control humidity by adsorbing water; however, adsorbents capable of the dual functionality of humidification and dehumidification, offering the desired control of the moisture level at room temperature, have yet to be explored. Here we report Y-shp-MOF-5, a hybrid microporous highly connected rare-earth-based metal-organic framework (MOF), with dual functionality for moisture control within the recommended range of relative humidity (45%-65% RH) set by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). Y-shp-MOF-5 exhibits exceptional structural integrity, robustness, and unique humidity-control performance, as confirmed by the large number (thousand) of conducted water vapor adsorption-desorption cycles. The retained structural integrity and the mechanism of water sorption were corroborated using in situ single-crystal X-ray diffraction (SCXRD) studies. The resultant working water uptake of 0.45 g·g-1 is solely regulated by a simple adjustment of the relative humidity, positioning this hydrolytically stable MOF as a prospective adsorbent for humidity control in confined spaces, such as space shuttles, aircraft cabins, and air-conditioned buildings.
Journal of Materials Chemistry | 2017
Youssef Belmabkhout; Renjith S. Pillai; Dalal Alezi; Osama Shekhah; Prashant M. Bhatt; Zhijie Chen; Karim Adil; Sébastien Vaesen; Guy De Weireld; Maolin Pang; Mikhail Suetin; Amy J. Cairns; Vera Solovyeva; Aleksander Shkurenko; Omar El Tall; Guillaume Maurin; Mohamed Eddaoudi
A cooperative experimental/modeling strategy was used to unveil the structure/gas separation performance relationship for a series of isostructural metal–organic frameworks (MOFs) with soc-topology (square-octahedral) hosting different extra-framework counter ions (NO3−, Cl− and Br−). In3+-, Fe3+-, Ga3+- and the newly isolated Al(III)-based isostructural soc-MOF were extensively studied and evaluated for the separation-based production of high-quality fuels (i.e., CH4, C3H8 and n-C4H10) and olefins. The structural/chemical fine-tuning of the soc-MOF platform promoted equilibrium-based selectivity toward C2+ (C2H6, C2H4, C3H6 C3H8 and n-C4H10) and conferred the desired chemical stability toward H2S. The noted dual chemical stability and gas/vapor selectivity, which have rarely been reported for equilibrium-based separation agents, are essential for the production of high-purity H2, CH4 and C2+ fractions in high yields. Interestingly, the evaluated soc-MOF analogues exhibited high selectivity for C2H4, C3H6 and n-C4H10. In particular, the Fe, Ga and Al analogues presented relatively enhanced C2+/CH4 adsorption selectivities. Notably, the Ga and Al analogues were found to be technically preferable because their structural integrities and separation performances were maintained upon exposure to H2S, indicating that these materials are highly tolerant to H2S. Therefore, the Ga-soc-MOF was further examined for the selective adsorption of H2S in the presence of CO2- and CH4-containing streams, such as refinery-off gases (ROG) and natural gas (NG). Grand canonical Monte Carlo (GCMC) simulations based on a specific force field describing the interactions between the guest molecules and the Ga sites supported and confirmed the considerably higher affinity of the Ga-soc-MOF for C2+ (as exemplified by n-C4H10) than for CH4. The careful selection of an appropriate metal for the trinuclear inorganic molecular building block (MBB), i.e., a Ga metal center, imbues the soc-MOF platform with the requisite hydrolytic stability, H2S stability, and exceptional gas selectivity for ROG and NG upgrading. Finally, the soc-MOF was deployed as a continuous film on a porous support, and its gas permeation properties as a membrane were evaluated.
Journal of the American Chemical Society | 2017
Zhijie Chen; Łukasz J. Weseliński; Karim Adil; Youssef Belmabkhout; Aleksander Shkurenko; Hao Jiang; Prashant M. Bhatt; Vincent Guillerm; Emilie Dauzon; Dong-Xu Xue; Michael O’Keeffe; Mohamed Eddaoudi
Highly connected and edge-transitive nets are of prime importance in crystal chemistry and are regarded as ideal blueprints for the rational design and construction of metal-organic frameworks (MOFs). We report the design and synthesis of highly connected MOFs based on reticulation of the sole two edge-transitive nets with a vertex figure as double six-membered-ring (d6R) building unit, namely the (4,12)-coordinated shp net (square and hexagonal-prism) and the (6,12)-coordinated alb net (aluminum diboride, hexagonal-prism and trigonal-prism). Decidedly, the combination of our recently isolated 12-connected (12-c) rare-earth (RE) nonanuclear [RE9(μ3-OH)12(μ3-O)2(O2C-)12] carboxylate-based cluster, points of extension matching the 12 vertices of hexagonal-prism d6R, with 4-connected (4-c) square porphyrinic tetracarboxylate ligand led to the formation of the targeted RE-shp-MOF. This is the first time that RE-MOFs based on 12-c molecular building blocks (MBBs), d6R building units, have been deliberately targeted and successfully isolated, paving the way for the long-awaited (6,12)-c MOF with alb topology. Indeed, combination of a custom-designed hexacarboxylate ligand with RE salts led to the formation of the first related alb-MOF, RE-alb-MOF. Intuitively, we successfully transplanted the alb topology to another chemical system and constructed the first indium-based alb-MOF, In-alb-MOF, by employing trinuclear [In3(μ3-O)(O2C-)6] as the requisite 6-connected trigonal-prism and purposely made a dodecacarboxylate ligand as a compatible 12-c MBB. Prominently, the dodecacarboxylate ligand was employed to transplant shp topology into copper-based MOFs by employing the copper paddlewheel [Cu2(O2C-)4] as the complementary square building unit, affording the first Cu-shp-MOF. We revealed that highly connected edge-transitive nets such shp and alb are ideal for topological transplantation and deliberate construction of related MOFs based on minimal edge-transitive nets.
Advanced Materials | 2017
Karim Adil; Prashant M. Bhatt; Youssef Belmabkhout; Sk Md Towsif Abtab; Hao Jiang; Ayalew H. Assen; Arijit Mallick; Amandine Cadiau; Jamal Aqil; Mohamed Eddaoudi
The development of practical solutions for the energy-efficient capture of carbon dioxide is of prime importance and continues to attract intensive research interest. Conceivably, the implementation of adsorption-based processes using different cycling modes, e.g., pressure-swing adsorption or temperature-swing adsorption, offers great prospects to address this challenge. Practically, the successful deployment of practical adsorption-based technologies depends on the development of made-to-order adsorbents expressing mutually two compulsory requisites: i) high selectivity/affinity for CO2 and ii) excellent chemical stability in the presence of impurities. This study presents a new comprehensive experimental protocol apposite for assessing the prospects of a given physical adsorbent for carbon capture under flue gas stream conditions. The protocol permits: i) the baseline performance of commercial adsorbents such as zeolite 13X, activated carbon versus liquid amine scrubbing to be ascertained, and ii) a standardized evaluation of the best reported metal-organic framework (MOF) materials for carbon dioxide capture from flue gas to be undertaken. This extensive study corroborates the exceptional CO2 capture performance of the recently isolated second-generation fluorinated MOF material, NbOFFIVE-1-Ni, concomitant with an impressive chemical stability and a low energy for regeneration. Essentially, the NbOFFIVE-1-Ni adsorbent presents the best compromise by satisfying all the required metrics for efficient CO2 scrubbing.
Chemical Communications | 2016
Baiyan Li; Youssef Belmabkhout; Yiming Zhang; Prashant M. Bhatt; Hongming He; Daliang Zhang; Yu Han; Mohamed Eddaoudi; Jason A. Perman; Shengqian Ma
We unveil a unique kinetic driven separation material for selectively removing linear paraffins from iso-paraffins via a molecular sieving mechanism. Subsequent carbonization and thermal treatment of CD-MOF-2, the cyclodextrin metal-organic framework, afforded a carbon molecular sieve with a uniform and reduced pore size of ca. 5.0 Å, and it exhibited highly selective kinetic separation of n-butane and n-pentane from iso-butane and iso-pentane, respectively.