Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prashanti Manda is active.

Publication


Featured researches published by Prashanti Manda.


Nucleic Acids Research | 2011

AgBase: supporting functional modeling in agricultural organisms

Fiona M. McCarthy; Cathy Gresham; Teresia J. Buza; Philippe Chouvarine; Lakshmi R. Pillai; Ranjit Kumar; Seval Ozkan; Hui Wang; Prashanti Manda; Tony Arick; Susan M. Bridges; Shane C. Burgess

AgBase (http://www.agbase.msstate.edu/) provides resources to facilitate modeling of functional genomics data and structural and functional annotation of agriculturally important animal, plant, microbe and parasite genomes. The website is redesigned to improve accessibility and ease of use, including improved search capabilities. Expanded capabilities include new dedicated pages for horse, cat, dog, cotton, rice and soybean. We currently provide 590 240 Gene Ontology (GO) annotations to 105 454 gene products in 64 different species, including GO annotations linked to transcripts represented on agricultural microarrays. For many of these arrays, this provides the only functional annotation available. GO annotations are available for download and we provide comprehensive, species-specific GO annotation files for 18 different organisms. The tools available at AgBase have been expanded and several existing tools improved based upon user feedback. One of seven new tools available at AgBase, GOModeler, supports hypothesis testing from functional genomics data. We host several associated databases and provide genome browsers for three agricultural pathogens. Moreover, we provide comprehensive training resources (including worked examples and tutorials) via links to Educational Resources at the AgBase website.


Journal of Biomedical Informatics | 2013

Interestingness measures and strategies for mining multi-ontology multi-level association rules from gene ontology annotations for the discovery of new GO relationships

Prashanti Manda; Fiona M. McCarthy; Susan M. Bridges

The Gene Ontology (GO), a set of three sub-ontologies, is one of the most popular bio-ontologies used for describing gene product characteristics. GO annotation data containing terms from multiple sub-ontologies and at different levels in the ontologies is an important source of implicit relationships between terms from the three sub-ontologies. Data mining techniques such as association rule mining that are tailored to mine from multiple ontologies at multiple levels of abstraction are required for effective knowledge discovery from GO annotation data. We present a data mining approach, Multi-ontology data mining at All Levels (MOAL) that uses the structure and relationships of the GO to mine multi-ontology multi-level association rules. We introduce two interestingness measures: Multi-ontology Support (MOSupport) and Multi-ontology Confidence (MOConfidence) customized to evaluate multi-ontology multi-level association rules. We also describe a variety of post-processing strategies for pruning uninteresting rules. We use publicly available GO annotation data to demonstrate our methods with respect to two applications (1) the discovery of co-annotation suggestions and (2) the discovery of new cross-ontology relationships.


BMC Bioinformatics | 2009

Comparing gene annotation enrichment tools for functional modeling of agricultural microarray data

Bart H. J. van den Berg; Chamali Thanthiriwatte; Prashanti Manda; Susan M. Bridges

AbstractThe widespread availability of microarray technology has driven functional genomics to the forefront as scientists seek to draw meaningful biological conclusions from their microarray results. Gene annotation enrichment analysis is a functional analysis technique that has gained widespread attention and for which many tools have been developed. Unfortunately, most of these tools have limited support for agricultural species. Here, we evaluate and compare four publicly available computational tools (Onto-Express, EasyGO, GOstat, and DAVID) that support analysis of gene expression datasets in agricultural species. We use AgBase as the functional annotation reference for agricultural species. The selected tools were evaluated based on i) available features, usage and accessibility, ii) implemented statistical computational methods, and iii) annotation and enrichment performance analysis. Annotation was assessed using a randomly selected test gene annotation set and an experimental differentially expressed gene-set – both from chicken. The experimental set was also used to evaluate identification of enriched functional groups.Comparison of the tools shows that they produce different sets of annotations for the two datasets and different functional groups for the experimental dataset. While DAVID, GOstat and Onto-Express annotate comparable numbers of genes, DAVID provides by far the most annotations per gene. However, many of DAVIDs annotations appear to be redundant or are at very high levels in the GO hierarchy. The GOSlim distribution of annotations shows that GOstat, Onto-Express and EasyGO provide similar GO distributions to those found in AgBase while annotations from DAVID show a different GOSlim distribution, again probably due to duplication and many non-specific terms. No consistent trends were found in results of GO term over/under representation analysis applied to the experimental data using different tools. While GOstat, David and Onto-Express could retrieve some significantly enriched terms, EasyGO did not show any significantly enriched terms. There was little agreement about the enriched terms identified by the tools.ConclusionDifferent tools for functionally annotating gene sets and identifying significantly enriched GO categories differ widely in their results when applied to a test annotation gene set and an experimental dataset from chicken. These results emphasize the need for care when interpreting the results of such analysis and the lack of standardization of approaches.


PLOS ONE | 2012

Cross-Ontology multi-level association rule mining in the Gene Ontology.

Prashanti Manda; Seval Ozkan; Hui Wang; Fiona M. McCarthy; Susan M. Bridges

The Gene Ontology (GO) has become the internationally accepted standard for representing function, process, and location aspects of gene products. The wealth of GO annotation data provides a valuable source of implicit knowledge of relationships among these aspects. We describe a new method for association rule mining to discover implicit co-occurrence relationships across the GO sub-ontologies at multiple levels of abstraction. Prior work on association rule mining in the GO has concentrated on mining knowledge at a single level of abstraction and/or between terms from the same sub-ontology. We have developed a bottom-up generalization procedure called Cross-Ontology Data Mining-Level by Level (COLL) that takes into account the structure and semantics of the GO, generates generalized transactions from annotation data and mines interesting multi-level cross-ontology association rules. We applied our method on publicly available chicken and mouse GO annotation datasets and mined 5368 and 3959 multi-level cross ontology rules from the two datasets respectively. We show that our approach discovers more and higher quality association rules from the GO as evaluated by biologists in comparison to previously published methods. Biologically interesting rules discovered by our method reveal unknown and surprising knowledge about co-occurring GO terms.


Briefings in Bioinformatics | 2016

The digital revolution in phenotyping

Anika Oellrich; Nigel Collier; Tudor Groza; Dietrich Rebholz-Schuhmann; Nigam H. Shah; Olivier Bodenreider; Mary Regina Boland; Ivo I. Georgiev; Hongfang Liu; Kevin Livingston; Augustin Luna; Ann-Marie Mallon; Prashanti Manda; Peter N. Robinson; Gabriella Rustici; Michelle Simon; Liqin Wang; Rainer Winnenburg; Michel Dumontier

Phenotypes have gained increased notoriety in the clinical and biological domain owing to their application in numerous areas such as the discovery of disease genes and drug targets, phylogenetics and pharmacogenomics. Phenotypes, defined as observable characteristics of organisms, can be seen as one of the bridges that lead to a translation of experimental findings into clinical applications and thereby support ‘bench to bedside’ efforts. However, to build this translational bridge, a common and universal understanding of phenotypes is required that goes beyond domain-specific definitions. To achieve this ambitious goal, a digital revolution is ongoing that enables the encoding of data in computer-readable formats and the data storage in specialized repositories, ready for integration, enabling translational research. While phenome research is an ongoing endeavor, the true potential hidden in the currently available data still needs to be unlocked, offering exciting opportunities for the forthcoming years. Here, we provide insights into the state-of-the-art in digital phenotyping, by means of representing, acquiring and analyzing phenotype data. In addition, we provide visions of this field for future research work that could enable better applications of phenotype data.


Genesis | 2015

Using the phenoscape knowledgebase to relate genetic perturbations to phenotypic evolution.

Prashanti Manda; James P. Balhoff; Hilmar Lapp; Paula M. Mabee

The abundance of phenotypic diversity among species can enrich our knowledge of development and genetics beyond the limits of variation that can be observed in model organisms. The Phenoscape Knowledgebase (KB) is designed to enable exploration and discovery of phenotypic variation among species. Because phenotypes in the KB are annotated using standard ontologies, evolutionary phenotypes can be compared with phenotypes from genetic perturbations in model organisms. To illustrate the power of this approach, we review the use of the KB to find taxa showing evolutionary variation similar to that of a query gene. Matches are made between the full set of phenotypes described for a gene and an evolutionary profile, the latter of which is defined as the set of phenotypes that are variable among the daughters of any node on the taxonomic tree. Phenoscapes semantic similarity interface allows the user to assess the statistical significance of each match and flags matches that may only result from differences in annotation coverage between genetic and evolutionary studies. Tools such as this will help meet the challenge of relating the growing volume of genetic knowledge in model organisms to the diversity of phenotypes in nature. The Phenoscape KB is available at http://kb.phenoscape.org. genesis 53:561–571, 2015.


BMC Bioinformatics | 2010

GOModeler- A tool for hypothesis-testing of functional genomics datasets

Prashanti Manda; McKinley G. Freeman; Susan M. Bridges; T. J. Jankun-Kelly; Bindu Nanduri; Fiona M. McCarthy; Shane C. Burgess

BackgroundFunctional genomics technologies that measure genome expression at a global scale are accelerating biological knowledge discovery. Generating these high throughput datasets is relatively easy compared to the downstream functional modelling necessary for elucidating the molecular mechanisms that govern the biology under investigation. A number of publicly available ‘discovery-based’ computational tools use the computationally amenable Gene Ontology (GO) for hypothesis generation. However, there are few tools that support hypothesis-based testing using the GO and none that support testing with user defined hypothesis terms.Here, we present GOModeler, a tool that enables researchers to conduct hypothesis-based testing of high throughput datasets using the GO. GOModeler summarizes the overall effect of a user defined gene/protein differential expression dataset on specific GO hypothesis terms selected by the user to describe a biological experiment. The design of the tool allows the user to complement the functional information in the GO with his/her domain specific expertise for comprehensive hypothesis testing.ResultsGOModeler tests the relevance of the hypothesis terms chosen by the user for the input gene dataset by providing the individual effects of the genes on the hypothesis terms and the overall effect of the entire dataset on each of the hypothesis terms. It matches the GO identifiers (ids) of the genes with the GO ids of the hypothesis terms and parses the names of those ids that match to assign effects. We demonstrate the capabilities of GOModeler with a dataset of nine differentially expressed cytokine genes and compare the results to those obtained through manual analysis of the dataset by an immunologist. The direction of overall effects on all hypothesis terms except one was consistent with the results obtained by manual analysis. The tool’s editing capability enables the user to augment the information extracted. GOModeler is available as a part of the AgBase tool suite (http://www.agbase.msstate.edu).ConclusionsGOModeler allows hypothesis driven analysis of high throughput datasets using the GO. Using this tool, researchers can quickly evaluate the overall effect of quantitative expression changes of gene set on specific biological processes of interest. The results are provided in both tabular and graphical formats.


bioRxiv | 2016

Investigating the Importance of Anatomical Homology for Cross-Species Phenotype Comparisons Using Semantic Similarity.

Prashanti Manda; Christopher J. Mungall; James P. Balhoff; Hilmar Lapp

There is growing use of ontologies for the measurement of cross-species phenotype similarity. Such similarity measurements contribute to diverse applications, such as identifying genetic models for human diseases, transferring knowledge among model organisms, and studying the genetic basis of evolutionary innovations. Two organismal features, whether genes, anatomical parts, or any other inherited feature, are considered to be homologous when they are evolutionarily derived from a single feature in a common ancestor. A classic example is the homology between the paired fins of fishes and vertebrate limbs. Anatomical ontologies that model the structural relations among parts may fail to include some known anatomical homologies unless they are deliberately added as separate axioms. The consequences of neglecting known homologies for applications that rely on such ontologies has not been well studied. Here, we examine how semantic similarity is affected when external homology knowledge is included. We measure phenotypic similarity between orthologous and non-orthologous gene pairs between humans and either mouse or zebrafish, and compare the inclusion of real with faux homology axioms. Semantic similarity was preferentially increased for orthologs when using real homology axioms, but only in the more divergent of the two species comparisons (human to zebrafish, not human to mouse), and the relative increase was less than 1% to non-orthologs. By contrast, inclusion of both real and faux random homology axioms preferentially increased similarities between genes that were initially more dissimilar in the other comparisons. Biologically meaningful increases in semantic similarity were seen for a select subset of gene pairs. Overall, the effect of including homology axioms on cross-species semantic similarity was modest at the levels of divergence examined here, but our results hint that it may be greater for more distant species comparisons.


international symposium on bioinformatics research and applications | 2017

What's Hot and What's Not? - Exploring Trends in Bioinformatics Literature Using Topic Modeling and Keyword Analysis.

Alexander Hahn; Somya Mohanty; Prashanti Manda

Scientists exploring a new area of research are interested to know the “hot” topics in that area in order to make informed choices. With exponential growth in scientific literature, identifying such trends manually is not easy. Topic modeling has emerged as an effective approach to analyze large volumes of text. While this approach has been applied on literature in other scientific areas, there has been no formal analysis of bioinformatics literature.


bioRxiv | 2018

Taking a Dive: Experiments in Deep Learning for Automatic Ontology-based Annotation of Scientific Literature

Prashanti Manda; Lucas Beasley; Somya Mohanty

Text mining approaches for automated ontology-based curation of biological and biomedical literature have largely focused on syntactic and lexical analysis along with machine learning. Recent advances in deep learning have shown increased accuracy for textual data annotation. However, the application of deep learning for ontology-based curation is a relatively new area and prior work has focused on a limited set of models. Here, we introduce a new deep learning model/architecture based on combining multiple Gated Recurrent Units (GRU) with a character+word based input. We use data from five ontologies in the CRAFT corpus as a Gold Standard to evaluate our model’s performance. We also compare our model to seven models from prior work. We use four metrics - Precision, Recall, F1 score, and a semantic similarity metric (Jaccard similarity) to compare our model’s output to the Gold Standard. Our model resulted in a 84% Precision, 84% Recall, 83% F1, and a 84% Jaccard similarity. Results show that our GRU-based model outperforms prior models across all five ontologies. We also observed that character+word inputs result in a higher performance across models as compared to word only inputs. These findings indicate that deep learning algorithms are a promising avenue to be explored for automated ontology-based curation of data. This study also serves as a formal comparison and guideline for building and selecting deep learning models and architectures for ontology-based curation.

Collaboration


Dive into the Prashanti Manda's collaboration.

Top Co-Authors

Avatar

James P. Balhoff

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan M. Bridges

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Paula M. Mabee

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Bindu Nanduri

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Todd Vision

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Hui Wang

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Wasila M. Dahdul

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Cathy Gresham

Mississippi State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge