Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prashen Chelikani is active.

Publication


Featured researches published by Prashen Chelikani.


Cellular and Molecular Life Sciences | 2004

Diversity of structures and properties among catalases

Prashen Chelikani; Ignacio Fita; Peter C. Loewen

More than 300 catalase sequences are now available, divided among monofunctional catalases (> 225), bifunctional catalase-peroxidases (> 50) and manganese-containing catalases (> 25). When combined with the recent appearance of crystal structures from at least two representatives from each of these groups (nine from the monofunctional catalases), valuable insights into the catalatic reaction mechanism in its various forms and into catalase evolution have been gained. The structures have revealed an unusually large number of modifications unique to catalases, a result of interacting with reactive oxygen species. Biochemical and physiological characterization of catalases from many different organisms has revealed a surprisingly wide range of catalatic efficiencies, despite similar sequences. Catalase gene expression in micro-organisms generally is controlled either by sensors of reactive oxygen species or by growth phase regulons, although the detailed mechanisms vary considerably.


Biochemical and Biophysical Research Communications | 2011

Functional bitter taste receptors are expressed in brain cells

Nisha Singh; Maria Vrontakis; Fiona E. Parkinson; Prashen Chelikani

Humans are capable of sensing five basic tastes which are sweet, sour, salt, umami and bitter. Of these, bitter taste perception provides protection against ingestion of potentially toxic substances. Bitter taste is sensed by bitter taste receptors (T2Rs) that belong to the G-protein coupled receptors (GPCRs) superfamily. Humans have 25 T2Rs that are expressed in the oral cavity, gastrointestinal (GI) neuroendocrine cells and airway cells. Electrophysiological studies of the brain neurons show that the neurons are able to respond to different tastants. However, the presence of bitter taste receptors in brain cells has not been elucidated. In this report using RT-PCR, and immunohistochemistry analysis we show that T2Rs are expressed in multiple regions of the rat brain. RT-PCR analysis revealed the presence of T2R4, T2R107 and T2R38 transcripts in the brain stem, cerebellum, cortex and nucleus accumbens. The bitter receptor T2R4 was selected for further analysis at the transcript level by quantitative real time PCR and at the protein level by immunohistochemistry. To elucidate if the T2R4 expressed in these cells is functional, assays involving G-protein mediated calcium signaling were carried out. The functional assays showed an increase in intracellular calcium levels after the application of exogenous ligands for T2R4, denatonium benzoate and quinine to these cultured cells, suggesting that endogenous T2R4 expressed in these cells is functional. We discuss our results in terms of the physiological relevance of bitter receptor expression in the brain.


Journal of Biological Chemistry | 2011

Structural Basis of Activation of Bitter Taste Receptor T2R1 and Comparison with Class A G-protein-coupled Receptors (GPCRs)

Nisha Singh; Sai Prasad Pydi; Jasbir Upadhyaya; Prashen Chelikani

The human bitter taste receptors (T2Rs) are non-Class A members of the G-protein-coupled receptor (GPCR) superfamily, with very limited structural information. Amino acid sequence analysis reveals that most of the important motifs present in the transmembrane helices (TM1–TM7) of the well studied Class A GPCRs are absent in T2Rs, raising fundamental questions regarding the mechanisms of activation and how T2Rs recognize bitter ligands with diverse chemical structures. In this study, the bitter receptor T2R1 was used to systematically investigate the role of 15 transmembrane amino acids in T2Rs, including 13 highly conserved residues, by amino acid replacements guided by molecular modeling. Functional analysis of the mutants by calcium imaging analysis revealed that replacement of Asn-662.65 and the highly conserved Asn-241.50 resulted in greater than 90% loss of agonist-induced signaling. Our results show that Asn-241.50 plays a crucial role in receptor activation by mediating an hydrogen bond network connecting TM1-TM2-TM7, whereas Asn-662.65 is essential for binding to the agonist dextromethorphan. The interhelical hydrogen bond between Asn-241.50 and Arg-552.54 restrains T2R receptor activity because loss of this bond in I27A and R55A mutants results in hyperactive receptor. The conserved amino acids Leu-1975.50, Ser-2005.53, and Leu-2015.54 form a putative LXXSL motif which performs predominantly a structural role by stabilizing the helical conformation of TM5 at the cytoplasmic end. This study provides for the first time mechanistic insights into the roles of the conserved transmembrane residues in T2Rs and allows comparison of the activation mechanisms of T2Rs with the Class A GPCRs.


Biochemical and Biophysical Research Communications | 2010

Bitter taste receptor T2R1 is activated by dipeptides and tripeptides

Jasbir Upadhyaya; Sai Prasad Pydi; Nisha Singh; Rotimi E. Aluko; Prashen Chelikani

Bitter taste signaling in humans is mediated by a group of 25 bitter receptors (T2Rs) that belong to the G-protein coupled receptor (GPCR) family. Previously, several bitter peptides were isolated and characterized from bitter tasting food protein derived extracts, such as pea protein and soya bean extracts. However, the molecular targets or receptors in humans for these bitter peptides were poorly characterized and least understood. In this study, we tested the ability of the bitter tasting tri- and di-peptides to activate the human bitter receptor, T2R1. In addition, we tested the ability of peptide inhibitors of the blood pressure regulatory protein, angiotensin converting enzyme (ACE) to activate T2R1. Using a heterologous expression system, T2R1 gene was transiently expressed in C6-glioma cells and changes in intracellular calcium was measured following addition of the peptides. We found that the bitter tasting tri-peptides are more potent in activating T2R1 than the di-peptides tested. Among the peptides examined, the bitter tri-peptide Phe-Phe-Phe (FFF), is the most potent in activating T2R1 with an EC50 value in the micromolar range. Furthermore, to elucidate the potential ligand binding pocket of T2R1 we used homology molecular modeling. The molecular models showed that the bitter peptides bind within the same binding pocket on the receptor. The ligand binding pocket in T2R1 is present on the extracellular surface of the receptor, and is formed by the transmembrane helices 1, 2, 3 and 7 and with extracellular loops 1 and 2 forming a cap like structure on the binding pocket.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Role of group-conserved residues in the helical core of β2-adrenergic receptor

Prashen Chelikani; Viktor Hornak; Markus Eilers; Phillip J. Reeves; Steven O. Smith; Uttam L. RajBhandary; H. Gobind Khorana

G protein-coupled receptors (GPCRs) belonging to class A contain several highly conserved (>90%) amino acids in their transmembrane helices. Results of mutational studies of these highly conserved residues suggest a common mechanism for locking GPCRs in an inactive conformation and for their subsequent activation upon ligand binding. Recently, a second set of sites in the transmembrane helices has been identified in which amino acids with small side chains, such as Gly, Ala, Ser, Thr, and Cys, are highly conserved (>90%) when considered as a group. These group-conserved residues have not been recognized as having essential structural or functional roles. To determine the role of group-conserved residues in the β2-adrenergic receptor (β2-AR), amino acid replacements guided by molecular modeling were carried out at key positions in transmembrane helices H2–H4. The most significant changes in receptor expression and activity were observed upon replacement of the amino acids Ser-161 and Ser-165 in H4. Substitution at these sites by larger residues lowered the expression and activity of the receptor but did not affect specific binding to the antagonist ligand dihydroalprenolol. A second site mutation, V114A, rescued the low expression of the S165V mutant. Substitution of other group-conserved residues in H2–H4 by larger amino acids lowered receptor activity in the order Ala-128, Ala-76, Ser-120, and Ala-78. Together these data provide comprehensive analysis of group-conserved residues in a class A GPCR and allow insights into the roles of these residues in GPCR structure and function.


Journal of Neurochemistry | 2012

Constitutively active mutant gives novel insights into the mechanism of bitter taste receptor activation

Sai Prasad Pydi; Rajinder P. Bhullar; Prashen Chelikani

J. Neurochem. (2012) 122, 537–544.


Journal of Biological Chemistry | 2014

Amino Acid Derivatives as Bitter Taste Receptor (T2R) Blockers

Sai Prasad Pydi; Tyler Sobotkiewicz; Rohini Billakanti; Rajinder P. Bhullar; Michele C. Loewen; Prashen Chelikani

Background: T2Rs are activated by hundreds of bitter compounds; however, only five blockers are known. Results: T2R4 residues involved in binding to agonist quinine and two novel bitter blockers GABA and BCML were identified. Conclusion: Bitter blockers and agonists share the same orthosteric site in T2R4. Significance: Bitter blockers identified in this study have tremendous physiological and nutraceutical importance. In humans, the 25 bitter taste receptors (T2Rs) are activated by hundreds of structurally diverse bitter compounds. However, only five antagonists or bitter blockers are known. In this study, using molecular modeling guided site-directed mutagenesis, we elucidated the ligand-binding pocket of T2R4. We found seven amino acids located in the extracellular side of transmembrane 3 (TM3), TM4, extracellular loop 2 (ECL2), and ECL3 to be involved in T2R4 binding to its agonist quinine. ECL2 residues Asn-173 and Thr-174 are essential for quinine binding. Guided by a molecular model of T2R4, a number of amino acid derivatives were screened for their ability to bind to T2R4. These predictions were tested by calcium imaging assays that led to identification of γ-aminobutryic acid (GABA) and Nα,Nα-bis(carboxymethyl)-l-lysine (BCML) as competitive inhibitors of quinine-activated T2R4 with an IC50 of 3.2 ± 0.3 μm and 59 ± 18 nm, respectively. Interestingly, pharmacological characterization using a constitutively active mutant of T2R4 reveals that GABA acts as an antagonist, whereas BCML acts as an inverse agonist on T2R4. Site-directed mutagenesis confirms that the two novel bitter blockers share the same orthosteric site as the agonist quinine. The signature residues Ala-90 and Lys-270 play important roles in interacting with BCML and GABA, respectively. This is the first report to characterize a T2R endogenous antagonist and an inverse agonist. The novel bitter blockers will facilitate physiological studies focused on understanding the roles of T2Rs in extraoral tissues.


The International Journal of Biochemistry & Cell Biology | 2016

Bitter taste receptors: Extraoral roles in pathophysiology.

Feroz Ahmed Shaik; Nisha Singh; Makoto Arakawa; Kangmin Duan; Rajinder P. Bhullar; Prashen Chelikani

Over the past decade tremendous progress has been made in understanding the functional role of bitter taste receptors (T2Rs) and bitter taste perception. This review will cover the recent advances made in identifying the role of T2Rs in pathophysiological states. T2Rs are widely expressed in various parts of human anatomy and have been shown to be involved in physiology of respiratory system, gastrointestinal tract and endocrine system. Empirical evidence has shown T2Rs to be an integral component of antimicrobial immune responses in upper respiratory tract infections. The studies on human airway smooth muscle cells have shown that a potent bitter tastant induced bronchodilatory effects mediated by bitter taste receptors. Clinical data suggests a role for T2R38 polymorphism in predisposition of individuals to chronic rhinosinusitis. The role of genetic variation in T2Rs and its impact on disease susceptibility have been investigated in various other disease risk factors such as alcohol dependence, head and neck cancers. Preliminary reports have demonstrated differential expression of functional T2Rs in breast cancer cell lines. Studies on the role of T2Rs in pathophysiology of diseases including chronic rhinosinusitis, asthma, cystic fibrosis, and cancer have been promising. However, research in this field is in its nascent stages, and more confirmatory studies on animal models and in clinical settings are required.


The International Journal of Biochemistry & Cell Biology | 2016

Bitter taste receptors: Novel insights into the biochemistry and pharmacology

Appalaraju Jaggupilli; Ryan Howard; Jasbir Upadhyaya; Rajinder P. Bhullar; Prashen Chelikani

Bitter taste receptors (T2Rs) belong to the super family of G protein-coupled receptors (GPCRs). There are 25 T2Rs expressed in humans, and these interact with a large and diverse group of bitter ligands. T2Rs are expressed in many extra-oral tissues and can perform diverse physiological roles. Structure-function studies led to the identification of similarities and dissimilarities between T2Rs and Class A GPCRs including amino acid conservation and novel motifs. However, the efficacy of most of the T2R ligands is not yet elucidated and the biochemical pharmacology of T2Rs is poorly understood. Recent studies on T2Rs characterized novel ligands including blockers for these receptors that include inverse agonist and antagonists. In this review we discuss the techniques used for elucidating bitter blockers, concept of ligand bias, generic amino acid numbering, the role of cholesterol, and conserved water molecules in the biochemistry and pharmacology of T2Rs.


Biochimica et Biophysica Acta | 2014

The third intracellular loop plays a critical role in bitter taste receptor activation

Sai Prasad Pydi; Nisha Singh; Jasbir Upadhyaya; Rajinder P. Bhullar; Prashen Chelikani

Bitter taste receptors (T2Rs) belong to the superfamily of G protein-coupled receptors (GPCRs). T2Rs are chemosensory receptors with important therapeutic potential. In humans, bitter taste is perceived by 25 T2Rs, which are distinct from the well-studied Class A GPCRs. The activation mechanism of T2Rs is poorly understood and none of the structure-function studies are focused on the role of the important third intracellular loop (ICL3). T2Rs have a unique signature sequence at the cytoplasmic end of fifth transmembrane helix (TM5), a highly conserved LxxSL motif. Here, we pursue an alanine scan mutagenesis of the ICL3 of T2R4 and characterize the functionality of 23 alanine mutants. We identify four mutants, H214A, Q216A, V234A and M237A, that exhibit constitutive activity. To our surprise, the H214A mutant showed very high constitutive activity over wild type T2R4. Interestingly, His214 is highly conserved (96%) in T2Rs and is present two amino acids below the LxxSL motif in TM5. Molecular modeling shows a dynamic network of interactions involving residues in TM5-ICL3-TM6 that restrain the movement of the helices. Changes in this network, as in the case of H214A, Q216A, V234A and M237A mutants, cause the receptor to adopt an active conformation. The conserved LxxSL motif in TM5 performs both structural and functional roles in this process. These results provide insight into the activation mechanism of T2Rs, and emphasize the unique functional role of ICL3 even within the GPCR subfamilies.

Collaboration


Dive into the Prashen Chelikani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nisha Singh

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ignacio Fita

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge