Rajinder P. Bhullar
University of Manitoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rajinder P. Bhullar.
Biochemical and Biophysical Research Communications | 2003
Ranjinder S. Sidhu; Richard R. Clough; Rajinder P. Bhullar
We have investigated the interaction of calmodulin (CaM) with Ras-p21 and the significance of this association. All Ras-p21 isoforms tested (H-, K-, and N-Ras) were detected in the particulate fraction of human platelets and MCF-7 cells, a human breast cancer cell line. In MCF-7 cells, H- and N-Ras were also detected in the cytosolic fraction. K-RasB from platelet and MCF-7 cell lysates was found to bind CaM in a Ca2+ -dependent but GTPgammaS-independent manner. The yeast two-hybrid analysis demonstrated that K-RasB binds to CaM in vivo. Incubation of isolated membranes from platelet and MCF-7 cells with CaM caused dissociation of only K-RasB from membranes in a Ca2+ -dependent manner. CaM antagonist, W7, inhibited dissociation of K-RasB. Addition of platelet or MCF-7 cytosol alone to isolated platelet membranes did not cause dissociation of K-RasB and only addition of exogenous CaM caused dissociation. The results suggest a potential role for Ca2+/CaM in the regulation of K-RasB function.
Annals of the New York Academy of Sciences | 1985
Krishnamurti Dakshinamurti; Lorraine E. Chalifour; Rajinder P. Bhullar
The requirement of biotin in the culture medium has been established for HeLa cells, human fibroblasts, baby hamster kidney cells (BHK) as well as polyoma-transformed BHK cells. Growth, viability, biotin content and the activities of biotin-dependent enzymes were used as criteria. Cells in culture appear to bind and internalized avidin as well as the avidin-biotin complex. Avidin seems to mimic a natural ligand that could be the biotin-binding protein of serum. Additions of serum fatty acids, aspartate or asparagine to the culture medium do not supplant the biotin requirement. Nuclear fractions of cells contain significant biotin without the ability to fix carbon dioxide. A biotin-containing protein has been isolated from rat liver nuclei. The incorporation of amino acids into cellular protein is decreased in biotin-deficient HeLa cells. The proportion of active ribosomes is also decreased in these cells. Supplementation of the medium of deficient cells with biotin results in stimulation of protein synthesis. It is suggested that biotin might subserve a function in cells in addition to its role as the prosthetic group of biotin-enzymes.
Journal of Biological Chemistry | 2002
Richard R. Clough; Ranjinder S. Sidhu; Rajinder P. Bhullar
Ral GTPases may be involved in calcium/calmodulin-mediated intracellular signaling pathways. RalA and RalB are activated by calcium, and RalA binds calmodulin in vitro. It was examined whether RalA can bind calmodulin in vivo, whether RalB can bind calmodulin, and whether calmodulin is functionally involved in Ral activation. Yeast two-hybrid analyses demonstrated both Rals interact directly but differentially with calmodulin. Coimmunoprecipitation experiments determined that calmodulin and RalB form complexes in human platelets. In vitro pull-down experiments in platelets and in vitrobinding assays showed endogenous Ral and calmodulin interact in a calcium-dependent manner. Truncated Ral constructs determined in vitro and in vivo that RalA has an additional calmodulin binding domain to that previously described, that although RalB binds calmodulin, its C-terminal region is involved in partially inhibiting this interaction, and that in vitroRalA and RalB have an N-terminal calcium-independent and a C-terminal calcium-dependent calmodulin binding domain. Functionally,in vitro Ral-GTP pull-down experiments determined that calmodulin is required for the thrombin-induced activation of Ral in human platelets. We propose that differential binding of calmodulin by RalA and RalB underlies possible functional differences between the two proteins and that calmodulin is involved in the regulation of the activation of Ral-GTPases.
Journal of Neurochemistry | 2012
Sai Prasad Pydi; Rajinder P. Bhullar; Prashen Chelikani
J. Neurochem. (2012) 122, 537–544.
Journal of Biological Chemistry | 2014
Sai Prasad Pydi; Tyler Sobotkiewicz; Rohini Billakanti; Rajinder P. Bhullar; Michele C. Loewen; Prashen Chelikani
Background: T2Rs are activated by hundreds of bitter compounds; however, only five blockers are known. Results: T2R4 residues involved in binding to agonist quinine and two novel bitter blockers GABA and BCML were identified. Conclusion: Bitter blockers and agonists share the same orthosteric site in T2R4. Significance: Bitter blockers identified in this study have tremendous physiological and nutraceutical importance. In humans, the 25 bitter taste receptors (T2Rs) are activated by hundreds of structurally diverse bitter compounds. However, only five antagonists or bitter blockers are known. In this study, using molecular modeling guided site-directed mutagenesis, we elucidated the ligand-binding pocket of T2R4. We found seven amino acids located in the extracellular side of transmembrane 3 (TM3), TM4, extracellular loop 2 (ECL2), and ECL3 to be involved in T2R4 binding to its agonist quinine. ECL2 residues Asn-173 and Thr-174 are essential for quinine binding. Guided by a molecular model of T2R4, a number of amino acid derivatives were screened for their ability to bind to T2R4. These predictions were tested by calcium imaging assays that led to identification of γ-aminobutryic acid (GABA) and Nα,Nα-bis(carboxymethyl)-l-lysine (BCML) as competitive inhibitors of quinine-activated T2R4 with an IC50 of 3.2 ± 0.3 μm and 59 ± 18 nm, respectively. Interestingly, pharmacological characterization using a constitutively active mutant of T2R4 reveals that GABA acts as an antagonist, whereas BCML acts as an inverse agonist on T2R4. Site-directed mutagenesis confirms that the two novel bitter blockers share the same orthosteric site as the agonist quinine. The signature residues Ala-90 and Lys-270 play important roles in interacting with BCML and GABA, respectively. This is the first report to characterize a T2R endogenous antagonist and an inverse agonist. The novel bitter blockers will facilitate physiological studies focused on understanding the roles of T2Rs in extraoral tissues.
The International Journal of Biochemistry & Cell Biology | 2016
Feroz Ahmed Shaik; Nisha Singh; Makoto Arakawa; Kangmin Duan; Rajinder P. Bhullar; Prashen Chelikani
Over the past decade tremendous progress has been made in understanding the functional role of bitter taste receptors (T2Rs) and bitter taste perception. This review will cover the recent advances made in identifying the role of T2Rs in pathophysiological states. T2Rs are widely expressed in various parts of human anatomy and have been shown to be involved in physiology of respiratory system, gastrointestinal tract and endocrine system. Empirical evidence has shown T2Rs to be an integral component of antimicrobial immune responses in upper respiratory tract infections. The studies on human airway smooth muscle cells have shown that a potent bitter tastant induced bronchodilatory effects mediated by bitter taste receptors. Clinical data suggests a role for T2R38 polymorphism in predisposition of individuals to chronic rhinosinusitis. The role of genetic variation in T2Rs and its impact on disease susceptibility have been investigated in various other disease risk factors such as alcohol dependence, head and neck cancers. Preliminary reports have demonstrated differential expression of functional T2Rs in breast cancer cell lines. Studies on the role of T2Rs in pathophysiology of diseases including chronic rhinosinusitis, asthma, cystic fibrosis, and cancer have been promising. However, research in this field is in its nascent stages, and more confirmatory studies on animal models and in clinical settings are required.
Biochimica et Biophysica Acta | 1996
Olga Jilkina; Rajinder P. Bhullar
Peptide specific polyclonal antibodies directed against C-termini of ras p21 related GTP-binding proteins, ralA and ralB, were generated. To assess antibody specificity, cDNAs coding for full length ralA and ralB were expressed in Escherichia coli as GST fusion proteins. Western blotting analysis using enhanced chemiluminescence technique confirmed that ralA and ralB antibodies were specific for their respective protein. To determine the concentration and distribution, varying amounts of GST-ralA and GST-ralB and, human platelet particulate and cytosolic proteins were loaded during Western blotting. The amount of ralA and ralB proteins in the platelet particulate fraction was determined to be 0.16 +/- 0.017 microgram/mg protein (n = 3) and 0.15 +/- 0.009 microgram/mg protein (n = 3) respectively. In the cytosol, only ralB protein was detected and its concentration was estimated to be 0.03 +/- 0.009 microgram/mg protein (n = 3). Both ralA and ralB proteins were isoprenylated in the presence of [3H] mevalonolactone plus rabbit reticulocyte lysate although radioactivity incorporated into ralA was three times higher than that associated with the ralB protein. Addition of geranylgeranyl pyrophosphate to the reaction mixture inhibited incorporation of radioactivity into ralA and ralB but not cH-ras suggesting that both ralA and ralB proteins are geranylgeranylated. Differential distribution of ralA and ralB GTP-binding proteins in human platelets suggests a distinct role for each of these proteins in platelet function.
The International Journal of Biochemistry & Cell Biology | 2016
Appalaraju Jaggupilli; Ryan Howard; Jasbir Upadhyaya; Rajinder P. Bhullar; Prashen Chelikani
Bitter taste receptors (T2Rs) belong to the super family of G protein-coupled receptors (GPCRs). There are 25 T2Rs expressed in humans, and these interact with a large and diverse group of bitter ligands. T2Rs are expressed in many extra-oral tissues and can perform diverse physiological roles. Structure-function studies led to the identification of similarities and dissimilarities between T2Rs and Class A GPCRs including amino acid conservation and novel motifs. However, the efficacy of most of the T2R ligands is not yet elucidated and the biochemical pharmacology of T2Rs is poorly understood. Recent studies on T2Rs characterized novel ligands including blockers for these receptors that include inverse agonist and antagonists. In this review we discuss the techniques used for elucidating bitter blockers, concept of ligand bias, generic amino acid numbering, the role of cholesterol, and conserved water molecules in the biochemistry and pharmacology of T2Rs.
Biochimica et Biophysica Acta | 2014
Sai Prasad Pydi; Nisha Singh; Jasbir Upadhyaya; Rajinder P. Bhullar; Prashen Chelikani
Bitter taste receptors (T2Rs) belong to the superfamily of G protein-coupled receptors (GPCRs). T2Rs are chemosensory receptors with important therapeutic potential. In humans, bitter taste is perceived by 25 T2Rs, which are distinct from the well-studied Class A GPCRs. The activation mechanism of T2Rs is poorly understood and none of the structure-function studies are focused on the role of the important third intracellular loop (ICL3). T2Rs have a unique signature sequence at the cytoplasmic end of fifth transmembrane helix (TM5), a highly conserved LxxSL motif. Here, we pursue an alanine scan mutagenesis of the ICL3 of T2R4 and characterize the functionality of 23 alanine mutants. We identify four mutants, H214A, Q216A, V234A and M237A, that exhibit constitutive activity. To our surprise, the H214A mutant showed very high constitutive activity over wild type T2R4. Interestingly, His214 is highly conserved (96%) in T2Rs and is present two amino acids below the LxxSL motif in TM5. Molecular modeling shows a dynamic network of interactions involving residues in TM5-ICL3-TM6 that restrain the movement of the helices. Changes in this network, as in the case of H214A, Q216A, V234A and M237A mutants, cause the receptor to adopt an active conformation. The conserved LxxSL motif in TM5 performs both structural and functional roles in this process. These results provide insight into the activation mechanism of T2Rs, and emphasize the unique functional role of ICL3 even within the GPCR subfamilies.
Biochemical and Biophysical Research Communications | 2014
Nisha Singh; Raja Chakraborty; Rajinder P. Bhullar; Prashen Chelikani
The human bitter taste receptors (T2Rs) are chemosensory receptors that belong to the G protein-coupled receptor superfamily. T2Rs are present on the surface of oral and many extra-oral cells. In humans 25 T2Rs are present, and these are activated by hundreds of chemical molecules of diverse structure. Previous studies have shown that many bitter compounds including chloroquine, quinidine, bitter melon extract and cucurbitacins B and E inhibit tumor growth and induce apoptosis in cancer cells. However, the existence of T2Rs in cancer cell is not yet elucidated. In this report using quantitative (q)-PCR and flow cytometry, we characterized the expression of T2R1, T2R4, T2R10, T2R38 and T2R49 in the highly metastatic breast cancer cell line MDA-MB-231, poorly metastatic cell line MCF-7, and non-cancerous mammary epithelial cell line MCF-10A. Among the 5 T2Rs analyzed by qPCR and flow cytometry, T2R4 is expressed at 40-70% in mammary epithelial cells in comparison to commonly used breast cancer marker proteins, estrogen receptor and E-cadherin. Interestingly, the expression of T2R4 was downregulated in breast cancer cells. An increase in intracellular calcium mobilization was observed after the application of bitter agonists, quinine, dextromethorphan, and phenylthiocarbamide that are specific for some of the 5 T2Rs. This suggests that the endogenous T2Rs expressed in these cells are functional. Taken together, our novel findings suggest that T2Rs are differentially expressed in mammary epithelial cells, with some T2Rs downregulated in breast cancer cells.