Pratibha C. Joshi
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pratibha C. Joshi.
Journal of Immunology | 2005
Pratibha C. Joshi; Lisa Applewhite; Jeffrey D. Ritzenthaler; Jesse Roman; Alberto L. Fernandez; Douglas C. Eaton; Lou Ann S. Brown; David M. Guidot
Although it is well recognized that alcohol abuse impairs alveolar macrophage immune function and renders patients susceptible to pneumonia, the mechanisms are incompletely understood. Alveolar macrophage maturation and function requires priming by GM-CSF, which is produced and secreted into the alveolar space by the alveolar epithelium. In this study, we determined that although chronic ethanol ingestion (6 wk) in rats had no effect on GM-CSF expression within the alveolar space, it significantly decreased membrane expression of the GM-CSF receptor in alveolar macrophages. In parallel, ethanol ingestion decreased cellular expression and nuclear binding of PU.1, the master transcription factor that activates GM-CSF-dependent macrophage functions. Furthermore, treatment of ethanol-fed rats in vivo with rGM-CSF via the upper airway restored GM-CSF receptor membrane expression as well as PU.1 protein expression and nuclear binding in alveolar macrophages. Importantly, GM-CSF treatment also restored alveolar macrophage function in ethanol-fed rats, as reflected by endotoxin-stimulated release of TNF-α and bacterial phagocytosis. We conclude that ethanol ingestion dampens alveolar macrophage immune function by decreasing GM-CSF receptor expression and downstream PU.1 nuclear binding and that these chronic defects can be reversed relatively quickly with rGM-CSF treatment in vivo.
American Journal of Respiratory Cell and Molecular Biology | 2009
Pratibha C. Joshi; Ashish J. Mehta; Wissam S. Jabber; Xian Fan; David M. Guidot
Chronic alcohol abuse impairs both alveolar epithelial and macrophage function, and renders individuals susceptible to acute lung injury, pneumonia, and other serious lung diseases. Zinc deficiency, which is known to impact both epithelial and immune cell functions, is also associated with alcohol abuse. In this study, chronic alcohol ingestion (6 wk) in rats altered expression of key zinc transporters and storage proteins in the small intestine and the lung, and decreased zinc levels in the alveolar compartment. Zinc supplementation of alveolar epithelial monolayers derived from alcohol-fed rats in vitro, or of the diets of alcohol-fed rats in vivo, restored alveolar epithelial barrier function, and these improvements were associated with salutary changes in tight junction protein expression and membrane localization. In parallel, dietary zinc supplementation increased intracellular zinc levels, GM-CSF receptor expression, and bacterial phagocytic capacity in the alveolar macrophages of alcohol-fed rats. Together, these studies implicate zinc deficiency as a novel mechanism mediating alcohol-induced alveolar epithelial and macrophage dysfunction. Importantly, these findings argue that dietary supplementation can overcome alcohol-induced zinc deficiency and restore alveolar epithelial and macrophage function, and therefore could be an effective treatment for the susceptible alcoholic lung phenotype.
Aids Research and Therapy | 2009
Coy Lassiter; Xian Fan; Pratibha C. Joshi; Barbara Ann Jacob; Roy L. Sutliff; Dean P. Jones; Michael Koval; David M. Guidot
BackgroundHIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined.ResultsHIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization.ConclusionTaken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.
Alcoholism: Clinical and Experimental Research | 2011
Ashish J. Mehta; Pratibha C. Joshi; Xian Fan; Lou Ann S. Brown; Jeffrey D. Ritzenthaler; Jesse Roman; David M. Guidot
BACKGROUND Chronic alcohol abuse causes oxidative stress, impairs alveolar macrophage immune function, and increases the risk of pneumonia and acute lung injury. Recently we determined that chronic alcohol ingestion in rats decreases zinc levels and macrophage function in the alveolar space; provocative findings in that zinc is essential for normal immune and antioxidant defenses. Alveolar macrophage immune function depends on stimulation by granulocyte/monocyte colony-stimulating factor, which signals via the transcription factor PU.1. In parallel, the antioxidant response element signals via the transcription factor Nrf2. However, the role of zinc bioavailability on these signaling pathways within the alveolar space is unknown. METHODS To determine the efficacy of dietary zinc supplementation on lung bacterial clearance and oxidative stress, we tested 3 different groups of rats: control-fed, alcohol-fed, and alcohol-fed with zinc supplementation. Rats were then inoculated with intratracheal Klebsiella pneumoniae, and lung bacterial clearance was determined 24 hours later. Isolated alveolar macrophages were isolated from uninfected animals and evaluated for oxidative stress and signaling through PU.1 and Nrf2. RESULTS Alcohol-fed rats had a 5-fold decrease in lung bacterial clearance compared to control-fed rats. Dietary zinc supplementation of alcohol-fed rats normalized bacterial clearance and mitigated oxidative stress in the alveolar space, as reflected by the relative balance of the thiol redox pair cysteine and cystine, and increased nuclear binding of both PU.1 and Nrf2 in alveolar macrophages from alcohol-fed rats. CONCLUSIONS Dietary zinc supplementation prevents alcohol-induced alveolar macrophage immune dysfunction and oxidative stress in a relevant experimental model, suggesting that such a strategy could decrease the risk of pneumonia and lung injury in individuals with alcohol use disorders.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2013
Xian Fan; Bashar S. Staitieh; J. Spencer Jensen; Kara J. Mould; Jared A. Greenberg; Pratibha C. Joshi; Michael Koval; David M. Guidot
The master transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the expression of antioxidant and phase II-metabolizing enzymes by activating the antioxidant response element (ARE) and thereby protects cells and tissues from oxidative stress. Pulmonary complications remain the leading cause of death in human immunodeficiency virus (HIV)-1-infected individuals, who display systemic oxidative stress and glutathione deficiency that can be modeled in transgenic rats where HIV-1-related viral proteins decrease glutathione levels and cause epithelial barrier dysfunction within the alveolar space by as yet unknown mechanisms. We hypothesized that HIV-1-related proteins inhibit Nrf2-mediated antioxidant defenses and thereby disrupt the normally tight alveolar epithelial barrier. Nrf2 RNA silencing dampened Nrf2/ARE activity, decreased the expression of the tight junction proteins zonula occludens-1, occludin, and claudin-18, increased paracellular permeability of alveolar epithelial monolayers derived from wild-type rats, and therefore reproduced the effects of HIV-1 transgene expression on the epithelial barrier that we had previously described. In contrast, upregulating Nrf2 activity, either by plasmid-mediated overexpression or treatment with the Nrf2 activator sulforaphane, increased the expression of ARE-dependent antioxidants, including NAD(P)H dehydrogenase, quinone 1 and glutathione, improved the expression of tight junction proteins, and restored the ability to form tight barriers in alveolar epithelial cells from HIV-1 transgenic rats. Taken together, these new findings argue that HIV-1-related proteins downregulate Nrf2 expression and/or activity within the alveolar epithelium, which in turn impairs antioxidant defenses and barrier function, thereby rendering the lung susceptible to oxidative stress and injury. Furthermore, this study suggests that activating the Nrf2/ARE pathway with the dietary supplement sulforaphane could augment antioxidant defenses and lung health in HIV-1-infected individuals.
Alcoholism: Clinical and Experimental Research | 2011
Xian Fan; Pratibha C. Joshi; Michael Koval; David M. Guidot
BACKGROUND Alcohol abuse and HIV-1 infection frequently coexist, and these individuals are at high risk for serious lung infections and respiratory failure. Although alcohol ingestion and HIV-1 transgene expression have been shown to independently cause oxidative stress and disrupt alveolar epithelial barrier function in experimental models, their interactive effects have not been examined. METHODS AND RESULTS In this study, we determined that chronic alcohol ingestion (12 weeks) exacerbated the already significant defects in alveolar epithelial paracellular permeability and lung liquid clearance in HIV-1 transgenic rats. Further, immunocytochemical analyses of tight junction protein expression in primary alveolar epithelial cells showed that occludin and zonula occludens-1 localization within the plasma membrane was more disrupted than in either condition alone, consistent with the observed defects in epithelial barrier function. Interestingly, expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), the transcription factor required to activate the antioxidant-response element, was decreased in primary alveolar epithelial cells isolated from HIV-1 transgenic rats. In parallel, exposing lung epithelial cells in vitro to either alcohol or the HIV-related protein gp120 also decreased Nrf2 expression. Importantly, treatment with procysteine, which increases thiol antioxidants including glutathione, improved tight junction protein localization in the plasma membrane and restored alveolar epithelial barrier function in alcohol-fed HIV-1 transgenic rats. CONCLUSIONS These results provide novel evidence that HIV-related proteins and alcohol together causes more barrier dysfunction in the lung epithelium than either stress alone. However, these significant effects on the alveolar barrier can be mitigated by augmenting the thiol antioxidant pool, a strategy with potential clinical applications in subjects who are highly vulnerable to lung disease because of coexistent alcohol abuse and HIV infection.
Aids Research and Therapy | 2011
Pratibha C. Joshi; David M. Guidot
BackgroundHighly effective antiviral treatment can suppress HIV-1 infection, but the chronic effects of HIV-1-related viral proteins, including gp120 and Tat, on organs such as the lungs can be damaging. HIV-1 transgenic rodent models are useful for studying the systemic effects of these proteins independently of viral infection. We have previously shown that HIV-1 transgene expression (and therefore, HIV-1-related protein expression) in rats decreases alveolar macrophage zinc levels and phagocytic capacity by unknown mechanisms. We hypothesized that HIV-1 transgene expression induces chronic inflammation and zinc sequestration within the liver and thereby decreases zinc bioavailability in the lung. We examined the expression of the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα), the zinc storage protein, metallothionein (MT1), and the zinc exporter, ZNT1 in the livers and the lungs of wild type and HIV-1 transgenic rats ± dietary zinc supplementation. In addition, we measured zinc levels, the zinc importing protein ZIP1, and the phagocytic capacity in the alveolar macrophages.ResultsHIV-1 transgene expression increased the liver-specific expression of TNFα, suggesting a chronic inflammatory response within the liver in response to HIV-1-related protein expression. In parallel, HIV-1 transgene expression significantly increased MT1 and ZNT1 expression in the liver as compared to the lung, a pattern that is consistent with zinc sequestration in the liver as occurs during systemic inflammation. Further, HIV-1 transgene expression decreased intracellular zinc levels and increased expression of ZIP1 in the alveolar macrophages, a pattern consistent with zinc deficiency, and decreased their bacterial phagocytic capacity. Interestingly, dietary zinc supplementation in HIV-1 transgenic rats decreased gene expression of TNFα, MT1, and ZNT1 in the liver while simultaneously increasing their expression in the lung. In parallel, zinc supplementation increased alveolar macrophage intracellular zinc levels and bacterial phagocytic capacity in HIV-1 transgenic rats.ConclusionTaken together, these findings suggest that chronic HIV-1-related protein expression causes liver inflammation and zinc sequestration, which in turn limits zinc bioavailability in the lung and thereby impairs alveolar macrophage phagocytic function. Importantly, dietary zinc supplementation decreases liver inflammation and zinc sequestration and restores alveolar macrophage phagocytic function in HIV-1 transgenic rats, a result with potential clinical implications for improving lung health in HIV-1-infected individuals.
Respiratory Research | 2013
Tiana V. Curry-McCoy; Aida Venado; David M. Guidot; Pratibha C. Joshi
BackgroundChronic alcohol abuse causes oxidative stress and impairs alveolar epithelial barrier integrity, thereby rendering the lung susceptible to acute edematous injury. Experimentally, alcohol-induced oxidative stress increases the expression of transforming growth factor β1 (TGFβ1) in the lung; however, we do not know the precise contribution of various alveolar cells in this process. In the present study, we focused on cell-cell interactions between alveolar macrophages and epithelial cells and the potential mechanisms by which TGFβ1 may become activated in the alveolar space of the alcoholic lung.MethodsPrimary alveolar macrophages and epithelial cells were isolated from control- and alcohol-fed Sprague–Dawley rats. Expression of TGFβ1 and the epithelial integrin αvβ6 were examined by real time PCR and either immunocytochemistry or flow cytometry. Alveolar epithelial cells were cultured on transwell supports in the presence of macrophage cell lysate from control- or alcohol-fed rats or in the presence of viable macrophages ± alcohol. Epithelial barrier function was assessed by transepithelial resistance (TER) and paracellular flux of Texas Red dextran.ResultsTGFβ1 expression was increased in alveolar macrophages from alcohol-fed rats, and TGFβ1 protein was predominantly membrane-bound. Importantly, alveolar macrophage cellular lysate from alcohol-fed rats decreased TER and increased paracellular dextran flux in primary alveolar epithelial cell monolayers as compared to the lysates from control-fed rats. Alcohol-induced epithelial barrier dysfunction was prevented by anti-TGFβ1 antibody treatment, indicating the presence of bioactive TGFβ1 in the macrophage lysate. In addition, co-culturing macrophages and epithelial cells in the presence of alcohol decreased epithelial barrier function, which also was prevented by anti-TGFβ1 and anti-αvβ6 treatment. In parallel, chronic alcohol ingestion in vivo, or direct treatment with active TGFβ1 in vitro, increased the expression of αvβ6 integrin, which is known to activate TGFβ1, in alveolar epithelial cells.ConclusionsTaken together, these data suggest that interactions between alveolar epithelial cells and macrophages contribute to the alcohol-mediated disruption of epithelial barrier function via the expression and activation of TGFβ1 at points of cell-cell contact.
Alcoholism: Clinical and Experimental Research | 2008
Jeffrey S. Otis; Patrick O. Mitchell; Corey Kershaw; Pratibha C. Joshi; David M. Guidot
BACKGROUND Alcohol abuse independently increases the risk of developing the acute respiratory distress syndrome (ARDS), a disease characterized by diffuse alveolar epithelial damage, lung edema, and consequent severe hypoxemia. Chronic alcohol abuse increases alveolar epithelial permeability both in vitro and in vivo, in part due to altered tight junction formation. However, both alcohol-fed animals and otherwise healthy alcoholic humans do not have pulmonary edema at baseline, even though their lungs are highly susceptible to acute edematous injury in response to inflammatory stresses. This suggests that active fluid transport by the alveolar epithelium is preserved or even augmented in the alcoholic lung. Chronic alcohol ingestion increases expression of apical sodium channels in the alveolar epithelium; however, its effects on the Na,K-ATPase complex that drives sodium and fluid transport out of the alveolar space have not been examined. METHODS Age- and gender-matched Sprague-Dawley rats were fed the Lieber-DeCarli liquid diet containing either alcohol or an isocaloric substitution (control diet) for 6 weeks. Gene and protein expression of lung Na,K-ATPase alpha1, alpha2, and beta1 subunits were quantified via real-time PCR and immunobiological analyses, respectively. Alcohol-induced, Na,K-ATPase-dependent epithelial barrier dysfunction was determined by calculating lung tissue wet:dry ratios following an ex vivo buffer-perfused challenge for 2 hours in the presence of ouabain (10(-4) M), a Na,K-ATPase inhibitor. RESULTS Chronic alcohol ingestion significantly increased gene and protein expression of each Na,K-ATPase subunit in rat lungs. Immunohistochemical analyses of the alcoholic lung also revealed that protein expression of the Na,K-ATPase alpha1 subunit was increased throughout the alveolar epithelium. Additionally, lungs isolated from alcohol-fed rats developed more edema than comparably treated lungs from control-fed rats, as reflected by increased lung tissue wet:dry ratios. CONCLUSIONS These findings indicate that chronic alcohol ingestion, which is known to increase alveolar epithelial paracellular permeability, actually increases the expression of Na,K-ATPase in the lung as a compensatory mechanism. This provides a potential explanation as to why the otherwise healthy alcoholic does not have evidence of pulmonary edema at baseline.
Journal of Investigative Medicine | 2006
C. C. Lassiter; Pratibha C. Joshi; Lou Ann S. Brown; David M. Guidot
The worldwide propagation of the human immunodeficiency virus (HIV) is one of our most challenging medical dilemmas. This highly mutable virus causes widespread immune dysfunction, predisposing its host to pulmonary oxidative stress and opportunistic infections that can lead to respiratory failure and death. However, the precise mechanisms leading to increased oxidative stress and infection are incompletely defined, and although the effects of HIV-1 on alveolar macrophage function have been studied extensively, very little attention has focused on the effects of HIV-1 expression on alveolar epithelial function. We hypothesized that expression of the HIV-1 genome causes oxidative stress within the alveolar space and impairs alveolar epithelial barrier function. To test our hypothesis, we used an HIV-1 transgenic rat model that expresses the HIV-1-related proteins but is not infected with virus. To evaluate HIV-1-induced oxidative stress, we determined the levels of glutathione (GSH) by HPLC in the lung lavage fluid of HIV-1 transgenic vs wild-type rats. To evaluate epithelial barrier function, we assessed both alveolar epithelial monolayer integrity using radiolabeled inulin and sucrose permeability in vitro and lung liquid clearance of an intratracheal saline challenge in vivo. We determined that HIV-1 expression decreased lung lavage GSH levels by more than 60% (p < .05). In parallel, epithelial monolayers from HIV-1 transgenic rats were {223}200% (p < .05) more permeable than epithelial monolayers from wild-type rats. Finally, HIV-1 animals had an {223}25% decrease (p = .07) in liquid clearance in vivo compared to wild-type rats. In conclusion, transgenic expression of the HIV-1 genome in rats impairs alveolar epithelial barrier function. We speculate that alveolar epithelial barrier dysfunction contributes to respiratory failure in HIV-1-infected individuals when they develop serious pulmonary infections. Therefore, the respiratory failure that often accompanies Pneumocystis infection and other pneumonias in HIV-1-infected individuals may reflect underlying alveolar epithelial dysfunction and not simply overwhelming infection. If this is true, then treatments aimed at preserving and/or restoring alveolar epithelial barrier function could potentially decrease the incidence and/or severity of respiratory failure in these uniquely susceptible individuals.