Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prativa Sherchan is active.

Publication


Featured researches published by Prativa Sherchan.


Neurobiology of Disease | 2013

P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH.

Sheng Chen; Qingyi Ma; Paul R. Krafft; Qin Hu; William Rolland; Prativa Sherchan; Zhang J; Jiping Tang; John H. Zhang

Neuroinflammation contributes to the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Cytotoxic events following SAH, such as extracellular accumulation of adenosine triphosphate (ATP), may activate the P2X purinoceptor 7 (P2X7R)/cryopyrin inflammasome axis, thus inducing the proinflammatory cytokine IL-1β/IL-18 secretion. We therefore hypothesized that inhibition of P2X7R/cryopyrin inflammasome axis would ameliorate neuroinflammation after SAH. In the present study, SAH was induced by the endovascular perforation in rats. Small interfering RNAs (siRNAs) of P2X7R or cryopyrin were administered intracerebroventricularly 24h before SAH. Brilliant blue G (BBG), a non-competitive antagonist of P2X7R, was administered intraperitoneally 30min following SAH. Post-assessments including SAH severity score, neurobehavioral test, brain water content, Western blot and immunofluorescence, were performed. Administration of P2X7R and cryopyrin siRNA as well as pharmacologic blockade of P2X7R by BBG ameliorated neurological deficits and brain edema at 24h following SAH. Inhibition of P2X7R/cryopyrin inflammasome axis suppressed caspase-1 activation, which subsequently decreased maturation of IL-1β/IL-18. To investigate the link between P2X7R and cryopyrin inflammasome in vivo, Benzoylbenzoyl-ATP (BzATP), a P2X7R agonist, was given to lipopolysaccharide (LPS) primed naive rats with scramble or cryopyrin siRNAs. In LPS-primed naive rats, BzATP induced caspase-1 activation and mature IL-1β release were neutralized by cryopyrin siRNA. Thus, the P2X7R/cryopyrin inflammasome axis may contribute to neuroinflammation via activation of caspase-1 and thereafter mature IL-1β/IL-18 production following SAH. Therapeutic interventions targeting P2X7R/cryopyrin pathway may be a novel approach to ameliorate EBI following SAH.


Critical Care Medicine | 2012

Isoflurane delays the development of early brain injury after subarachnoid hemorrhage through sphingosine-related pathway activation in mice

Orhan Altay; Yu Hasegawa; Prativa Sherchan; Hidenori Suzuki; Nikan H. Khatibi; Jiping Tang; John H. Zhang

Objective:Isoflurane, a volatile anesthetic agent, has been recognized for its potential neuroprotective properties and has antiapoptotic effects. We examined whether isoflurane posttreatment is protective against early brain injury after subarachnoid hemorrhage and determined whether this effect needs sphingosine-related pathway activation. Design:Controlled in vivo laboratory study. Setting:Animal research laboratory. Subjects:One hundred seventy-nine 8-wk-old male CD-1 mice weighing 30–38 g. Interventions:Subarachnoid hemorrhage was induced in mice by endovascular perforation. Animals were randomly assigned to sham-operated, subarachnoid hemorrhage–vehicle, and subarachnoid hemorrhage+2% isoflurane. Neurobehavioral function and brain edema were evaluated at 24 and 72 hrs. The expression of sphingosine kinase, phosphorylated Akt, and cleaved caspase-3 was determined by Western blotting and immunofluorescence. Neuronal cell death was examined by terminal deoxynucleotidyl transferase–mediated uridine 5′-triphosphate-biotin nick end-labeling staining. Effects of a sphingosine kinase inhibitor N, N-dimethylsphingosine or a sphingosine 1 phosphate receptor inhibitor VPC23019 on isoflurane’s protective action against postsubarachnoid hemorrhage early brain injury were also examined. Measurements and Main Results:Isoflurane significantly improved neurobehavioral function and brain edema at 24 hrs but not 72 hrs after subarachnoid hemorrhage. At 24 hrs, isoflurane attenuated neuronal cell death in the cortex, associated with an increase in sphingosine kinase 1 and phosphorylated Akt, and a decrease in cleaved caspase-3. The beneficial effects of isoflurane were abolished by N, N-dimethylsphingosine and VPC23019. Conclusions:Isoflurane posttreatment delays the development of postsubarachnoid hemorrhage early brain injury through antiapoptotic mechanisms including sphingosine-related pathway activation, implying its use for anesthesia during acute aneurysm surgery or intervention.


Neurochemistry International | 2012

Inhibition of Rho kinase by Hydroxyfasudil Attenuates Brain Edema after Subarachnoid Hemorrhage in Rats

Mutsumi Fujii; Kamil Duris; Orhan Altay; Yoshiteru Soejima; Prativa Sherchan; John H. Zhang

The blood-brain barrier (BBB) disruption and brain edema are important pathophysiologies of early brain injury after subarachnoid hemorrhage (SAH). This study is to evaluate whether Rho kinase (Rock) enhances BBB permeability via disruption of tight junction proteins during early brain injury. Adult male rats were assigned to five groups; Sham-operated, SAH treated with saline, a Rock inhibitor hydroxyfasudil (HF) (10 mg/kg) treatment at 0.5 h after SAH, HF treatment at 0.5 and 6 h (10 mg/kg, each) after SAH, and another Rock inhibitor Y27632 (10 mg/kg) treatment at 0.5 h after SAH. The perforation model of SAH was performed and neurological score and brain water content were evaluated 24 and 72 h after surgery. Evans blue extravasation, Rock activity assay, and western blotting analyses were evaluated 24 h after surgery. Treatment of HF significantly improved neurological scores 24 h after SAH. Single treatment with HF and Y27632, and two treatments with HF reduced brain water content in the ipsilateral hemisphere. HF reduced Evans blue extravasation in the ipsilateral hemisphere after SAH. Rock activity increased 24 h after SAH, and HF reversed the activity. SAH significantly decreased the levels of tight junction proteins, occludin and zonula occludens-1 (ZO-1), and HF preserved the levels of occluding and ZO-1 in ipsilateral hemisphere. In conclusion, HF attenuated BBB permeability after SAH, possibly by protection of tight junction proteins.


Journal of Neurotrauma | 2011

Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats.

Prativa Sherchan; Tim Lekic; Hidenori Suzuki; Yu Hasegawa; William Rolland; Kamil Duris; Yan Zhan; Jiping Tang; John H. Zhang

Subarachnoid hemorrhage (SAH) results in significant long-lasting cognitive dysfunction. Therefore, evaluating acute and long-term outcomes after therapeutic intervention is important for clinical translation. The aim of this study was to use minocycline, a known neuroprotectant agent, to evaluate the long-term benefits in terms of neurobehavior and neuropathology after experimental SAH in rats, and to determine which neurobehavioral test would be effective for long-term evaluation. SAH was induced by endovascular perforation in adult male Sprague-Dawley rats (n=118). The animals were treated with intraperitoneal injection of minocycline (45 mg/kg or 135 mg/kg) or vehicle 1 h after SAH induction. In the short-term, animals were euthanized at 24 and 72 h for evaluation of neurobehavior, brain water content, and matrix metalloproteinase (MMP) activity. In the long-term, neurobehavior was evaluated at days 21-28 post-SAH, and histopathological analysis was done at day 28. High-dose but not low-dose minocycline reduced brain water content at 24 h, and therefore only the high-dose regimen was used for further evaluation, which reduced MMP-9 activity at 24 h. Further, high-dose minocycline improved spatial memory and attenuated neuronal loss in the hippocampus and cortex. The rotarod, T-maze, and water maze tests, but not the inclined plane test, detected neurobehavioral deficits in SAH rats at days 21-28. This study demonstrates that minocycline attenuates long-term functional and morphological outcomes after endovascular perforation-induced SAH. Long-term neurobehavioral assessments using the rotarod, T-maze, and water maze tests could be useful to evaluate the efficacy of therapeutic intervention after experimental SAH.


Journal of the Neurological Sciences | 2014

Cannabinoid type 2 receptor stimulation attenuates brain edema by reducing cerebral leukocyte infiltration following subarachnoid hemorrhage in rats.

Mutsumi Fujii; Prativa Sherchan; Paul R. Krafft; William Rolland; Yoshiteru Soejima; John H. Zhang

Early brain injury (EBI), following subarachnoid hemorrhage (SAH), comprises blood-brain barrier (BBB) disruption and consequent edema formation. Peripheral leukocytes can infiltrate the injured brain, thereby aggravating BBB leakage and neuroinflammation. Thus, anti-inflammatory pharmacotherapies may ameliorate EBI and provide neuroprotection after SAH. Cannabinoid type 2 receptor (CB2R) agonism has been shown to reduce neuroinflammation; however, the precise protective mechanisms remain to be elucidated. This study aimed to evaluate whether the selective CB2R agonist, JWH133 can ameliorate EBI by reducing brain-infiltrated leukocytes after SAH. Adult male Sprague-Dawley rats were randomly assigned to the following groups: sham-operated, SAH with vehicle, SAH with JWH133 (1.0mg/kg), or SAH with a co-administration of JWH133 and selective CB2R antagonist SR144528 (3.0mg/kg). SAH was induced by endovascular perforation, and JWH133 was administered 1h after surgery. Neurological deficits, brain water content, Evans blue dye extravasation, and Western blot assays were evaluated at 24h after surgery. JWH133 improved neurological scores and reduced brain water content; however, SR144528 reversed these treatment effects. JWH133 reduced Evans blue dye extravasation after SAH. Furthermore, JWH133 treatment significantly increased TGF-β1 expression and prevented an SAH-induced increase in E-selectin and myeloperoxidase. Lastly, SAH resulted in a decreased expression of the tight junction protein zonula occludens-1 (ZO-1); however, JWH133 treatment increased the ZO-1 expression. We suggest that CB2R stimulation attenuates neurological outcome and brain edema, by suppressing leukocyte infiltration into the brain through TGF-β1 up-regulation and E-selectin reduction, resulting in protection of the BBB after SAH.


The Journal of Neuroscience | 2015

Phosphoinositide 3-Kinase Gamma Contributes to Neuroinflammation in a Rat Model of Surgical Brain Injury.

Lei Huang; Prativa Sherchan; Yuechun Wang; Cesar Reis; Richard L. Applegate; Jiping Tang; John H. Zhang

Neuroinflammation plays an important role in the pathophysiology of surgical brain injury (SBI). Phosphoinositide 3-kinase gamma (PI3Kγ), predominately expressed in immune and endothelial cells, activates multiple inflammatory responses. In the present study, we investigated the role of PI3Kγ and PI3Kγ-activated phosphodiesterase 3B (PDE3B) in neuroinflammation in a rat model of SBI. One hundred and fifty-two male Sprague Dawley rats (weight 280–350 g) were subjected to a partial right frontal lobe corticotomy model of SBI. A PI3Kγ pharmacological inhibitor (AS252424 or AS605240) was administered intraperitoneally. PI3Kγ siRNA, human recombinant active-PI3Kγ protein, or human recombinant active-PDE3B protein were administered intracerebroventricularly. Post-SBI assessments included neurobehavioral tests, brain water content, Western blot, and immunohistochemistry. Endogenous PI3Kγ levels were increased within peri-resection brain tissues after SBI, accompanied by increased brain water content and neurological functional deficits. There was a trend toward increased endogenous PDE3B phosphorylation after SBI. The selective PI3Kγ inhibitors AS252424 and AS605240 reduced brain water content surrounding corticotomy and improved neurological function after SBI. SBI increased and PI3Kγ inhibitor decreased levels of myeloperoxidase, cluster of differentiation 3, mast cell degranulation, E-selectin, and IL-1 in peri-resection brain tissues. Direct administration of human recombinant active-PI3Kγ protein and active-PDE3B protein countered the protective effect of AS252424. PI3Kγ siRNA reduced PI3Kγ levels, decreased brain water content within peri-resection brain tissues, and improved neurological function after SBI. Collectively, our findings suggest that PI3Kγ contributed to neuroinflammation after SBI. The use of selective PI3Kγ inhibitors may be a novel approach to ameliorating SBI via their anti-inflammation effects. SIGNIFICANCE STATEMENT Life-saving or elective neurosurgeries often involve unavoidable damages to neighboring, nondiseased brain tissues. Such surgical brain injury (SBI) is attributable exclusively to the neurosurgical procedure itself and may cause postoperative complications that exacerbate neurological function. Although the importance of this medical problem is fully acknowledged, intraoperative administration of adjunctive treatment such as steroids and mannitol to patients undergoing neurosurgery appear not to be efficient remedies for SBI. To date, the issue of perioperative neuroprotection specifically against SBI has not been well studied. Using a clinically relevant rat model of SBI, we are exploring a new neuroprotective strategy targeting phosphoinositide 3-kinase gamma (PI3Kγ). PI3Kγ activates multiple inflammatory responses. By attenuating neuroinflammation, selective PI3Kγ inhibition would limit postoperative complications and benefit neurological outcomes.


Neurobiology of Disease | 2016

Recombinant Slit2 attenuates neuroinflammation after surgical brain injury by inhibiting peripheral immune cell infiltration via Robo1-srGAP1 pathway in a rat model.

Prativa Sherchan; Lei Huang; Yuechun Wang; Onat Akyol; Jiping Tang; John H. Zhang

BACKGROUND AND PURPOSE Peripheral immune cell infiltration to the brain tissue at the perisurgical site can promote neuroinflammation after surgical brain injury (SBI). Slit2, an extracellular matrix protein, has been reported to reduce leukocyte migration. This study evaluated the effect of recombinant Slit2 and the role of its receptor roundabout1 (Robo1) and its downstream mediator Slit-Robo GTPase activating protein 1 (srGAP1)-Cdc42 on peripheral immune cell infiltration after SBI in a rat model. METHODS One hundred and fifty-three adult male Sprague-Dawley rats (280-350 g) were used. Partial resection of right frontal lobe was performed to induce SBI. Slit2 siRNA was administered by intracerebroventricular injection 24h before SBI. Recombinant Slit2 was injected intraperitoneally 1h before SBI. Recombinant Robo1 used as a decoy receptor was co-administered with recombinant Slit2. srGAP1 siRNA was administered by intracerebroventricular injection 24h before SBI. Post-assessments included brain water content measurement, neurological tests, ELISA, Western blot, immunohistochemistry, and Cdc42 activity assay. RESULTS Endogenous Slit2 was increased after SBI. Robo1 was expressed by peripheral immune cells. Endogenous Slit2 knockdown worsened brain edema after SBI. Recombinant Slit2 administration reduced brain edema, neurological deficits, and pro-inflammatory cytokines after SBI. Recombinant Slit2 reduced peripheral immune cell markers cluster of differentiation 45 (CD45) and myeloperoxidase (MPO), as well as Cdc42 activity in the perisurgical brain tissue which was reversed by recombinant Robo1 co-administration and srGAP1 siRNA. CONCLUSIONS Recombinant Slit2 improved outcomes by reducing neuroinflammation after SBI, possibly by decreasing peripheral immune cell infiltration to the perisurgical site through Robo1-srGAP1 mediated inhibition of Cdc42 activity. These results suggest that Slit2 may be beneficial to reduce SBI-induced neuroinflammation.


Acta neurochirurgica | 2016

Cannabinoid Receptor Type 2 Agonist Attenuates Acute Neurogenic Pulmonary Edema by Preventing Neutrophil Migration after Subarachnoid Hemorrhage in Rats.

Mutsumi Fujii; Prativa Sherchan; Yoshiteru Soejima; Desislava Doycheva; Diana Zhao; John H. Zhang

We evaluated whether JWH133, a selective cannabinoid type 2 receptor (CB2R) agonist, prevented neurogenic pulmonary edema (NPE) after subarachnoid hemorrhage (SAH) by attenuating inflammation. Adult male rats were assigned to six groups: sham-operated, SAH with vehicle, SAH with JWH133 (0.3, 1.0, or 3.0 mg/kg) treatment 1 h after surgery, and SAH with JWH133 (1.0 mg/kg) at 1 h with a selective CB2R antagonist, SR144528 (3.0 mg/kg). The perforation model of SAH was performed and pulmonary wet-to-dry weight ratio was evaluated 24 and 72 h after surgery. Western blot analyses and immunohistochemistry were evaluated 24 h after surgery. JWH133 (1.0 mg/kg) significantly and most strongly improved lung edema 24 h after SAH. SR144528 administration significantly reversed the effects of JWH133 (1.0 mg/kg). SAH-induced increasing levels of myeloperoxidase (MPO) and decreasing levels of a tight junction (TJ) protein, junctional adhesion molecule (JAM)-A, were ameliorated by JWH133 (1.0 mg/kg) administration 24 h after SAH. Immunohistochemical assessment also confirmed substantial leukocyte infiltration in the outside of vessels in SAH, which were attenuated by JWH133 (1.0 mg/kg) injection. CB2R agonist ameliorated lung permeability by inhibiting leukocyte trafficking and protecting tight junction proteins in the lung of NPE after SAH.


Acta neurochirurgica | 2013

Surgical Brain Injury and Edema Prevention

Prativa Sherchan; Cherine H. Kim; John H. Zhang

Neurosurgical procedures, carried out routinely in health institutions, present postoperative complications that result from unavoidable brain injury inflicted by surgical maneuvers. These maneuvers, which include incisions, electrocauterization, and retraction, place brain tissue at the margins of the operative site at risk of injury. Brain edema is a major complication that develops subsequent to this surgically induced brain injury. In the present review, we will discuss type of injury as well as the animal model available to study it. In addition, we will discuss potential mediators, including vascular endothelial growth factor, metalloproteinases, and cyclooxygenases, which have been tested in in vivo experimental studies and have been shown to be potential targets for the development of clinical therapies for neuroprotection against brain edema.


Scientific Reports | 2017

Crotalus atrox venom preconditioning increases plasma fibrinogen and reduces perioperative hemorrhage in a rat model of surgical brain injury

Cherine H. Kim; Devin W. McBride; Ronak Raval; Prativa Sherchan; Karen L. Hay; Eric C.K. Gren; Wayne Kelln; Tim Lekic; William K. Hayes; Brian S. Bull; Richard L. Applegate; Jiping Tang; John H. Zhang

Perioperative bleeding is a potentially devastating complication in neurosurgical patients, and plasma fibrinogen concentration has been identified as a potential modifiable risk factor for perioperative bleeding. The aim of this study was to evaluate preconditioning with Crotalus atrox venom (Cv-PC) as potential preventive therapy for reducing perioperative hemorrhage in the rodent model of surgical brain injury (SBI). C. atrox venom contains snake venom metalloproteinases that cleave fibrinogen into fibrin split products without inducing clotting. Separately, fibrinogen split products induce fibrinogen production, thereby elevating plasma fibrinogen levels. Thus, the hypothesis was that preconditioning with C. atrox venom will produce fibrinogen spilt products, thereby upregulating fibrinogen levels, ultimately improving perioperative hemostasis during SBI. We observed that Cv-PC SBI animals had significantly reduced intraoperative hemorrhage and postoperative hematoma volumes compared to those of vehicle preconditioned SBI animals. Cv-PC animals were also found to have higher levels of plasma fibrinogen at the time of surgery, with unchanged prothrombin time. Cv-PC studies with fractions of C. atrox venom suggest that snake venom metalloproteinases are largely responsible for the improved hemostasis by Cv-PC. Our findings indicate that Cv-PC increases plasma fibrinogen levels and may provide a promising therapy for reducing perioperative hemorrhage in elective surgeries.

Collaboration


Dive into the Prativa Sherchan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Huang

Loma Linda University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devin W. McBride

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge