Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Praveen Rajendran is active.

Publication


Featured researches published by Praveen Rajendran.


Clinical Epigenetics | 2011

Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

Praveen Rajendran; Emily Ho; David E. Williams; Roderick H. Dashwood

Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies.


Molecular Cancer | 2011

Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly

Praveen Rajendran; Barbara Delage; W. Mohaiza Dashwood; Tian-Wei Yu; Bradyn Wuth; David E. Williams; Emily Ho; Roderick H. Dashwood

BackgroundHistone deacetylase (HDAC) inhibitors are currently undergoing clinical evaluation as anti-cancer agents. Dietary constituents share certain properties of HDAC inhibitor drugs, including the ability to induce global histone acetylation, turn-on epigenetically-silenced genes, and trigger cell cycle arrest, apoptosis, or differentiation in cancer cells. One such example is sulforaphane (SFN), an isothiocyanate derived from the glucosinolate precursor glucoraphanin, which is abundant in broccoli. Here, we examined the time-course and reversibility of SFN-induced HDAC changes in human colon cancer cells.ResultsCells underwent progressive G2/M arrest over the period 6-72 h after SFN treatment, during which time HDAC activity increased in the vehicle-treated controls but not in SFN-treated cells. There was a time-dependent loss of class I and selected class II HDAC proteins, with HDAC3 depletion detected ahead of other HDACs. Mechanism studies revealed no apparent effect of calpain, proteasome, protease or caspase inhibitors, but HDAC3 was rescued by cycloheximide or actinomycin D treatment. Among the protein partners implicated in the HDAC3 turnover mechanism, silencing mediator for retinoid and thyroid hormone receptors (SMRT) was phosphorylated in the nucleus within 6 h of SFN treatment, as was HDAC3 itself. Co-immunoprecipitation assays revealed SFN-induced dissociation of HDAC3/SMRT complexes coinciding with increased binding of HDAC3 to 14-3-3 and peptidyl-prolyl cis/trans isomerase 1 (Pin1). Pin1 knockdown blocked the SFN-induced loss of HDAC3. Finally, SFN treatment for 6 or 24 h followed by SFN removal from the culture media led to complete recovery of HDAC activity and HDAC protein expression, during which time cells were released from G2/M arrest.ConclusionThe current investigation supports a model in which protein kinase CK2 phosphorylates SMRT and HDAC3 in the nucleus, resulting in dissociation of the corepressor complex and enhanced binding of HDAC3 to 14-3-3 or Pin1. In the cytoplasm, release of HDAC3 from 14-3-3 followed by nuclear import is postulated to compete with a Pin1 pathway that directs HDAC3 for degradation. The latter pathway predominates in colon cancer cells exposed continuously to SFN, whereas the former pathway is likely to be favored when SFN has been removed within 24 h, allowing recovery from cell cycle arrest.


Epigenetics | 2013

HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates

Praveen Rajendran; Ariam I. kidane; Tian-Wei Yu; Wan-Mohaiza Dashwood; William H. Bisson; Christiane V. Löhr; Emily Ho; David E. Williams; Roderick H. Dashwood

Histone deacetylases (HDACs) and acetyltransferases have important roles in the regulation of protein acetylation, chromatin dynamics and the DNA damage response. Here, we show in human colon cancer cells that dietary isothiocyanates (ITCs) inhibit HDAC activity and increase HDAC protein turnover with the potency proportional to alkyl chain length, i.e., AITC < sulforaphane (SFN) < 6-SFN < 9-SFN. Molecular docking studies provided insights into the interactions of ITC metabolites with HDAC3, implicating the allosteric site between HDAC3 and its co-repressor. ITCs induced DNA double-strand breaks and enhanced the phosphorylation of histone H2AX, ataxia telangiectasia and Rad3-related protein (ATR) and checkpoint kinase-2 (CHK2). Depending on the ITC and treatment conditions, phenotypic outcomes included cell growth arrest, autophagy and apoptosis. Coincident with the loss of HDAC3 and HDAC6, as well as SIRT6, ITCs enhanced the acetylation and subsequent degradation of critical repair proteins, such as CtIP, and this was recapitulated in HDAC knockdown experiments. Importantly, colon cancer cells were far more susceptible than non-cancer cells to ITC-induced DNA damage, which persisted in the former case but was scarcely detectable in non-cancer colonic epithelial cells under the same conditions. Future studies will address the mechanistic basis for dietary ITCs preferentially exploiting HDAC turnover mechanisms and faulty DNA repair pathways in colon cancer cells vs. normal cells.


Critical Reviews in Biochemistry and Molecular Biology | 2011

Metabolism as a key to histone deacetylase inhibition

Praveen Rajendran; David E. Williams; Emily Ho; Roderick H. Dashwood

There is growing interest in the epigenetic mechanisms that are dysregulated in cancer and other human pathologies. Under this broad umbrella, modulators of histone deacetylase (HDAC) activity have gained interest as both cancer chemopreventive and therapeutic agents. Of the first generation, FDA-approved HDAC inhibitors to have progressed to clinical trials, vorinostat represents a “direct acting” compound with structural features suitable for docking into the HDAC pocket, whereas romidepsin can be considered a prodrug that undergoes reductive metabolism to generate the active intermediate (a zinc-binding thiol). It is now evident that other agents, including those in the human diet, can be converted by metabolism to intermediates that affect HDAC activity. Examples are cited of short-chain fatty acids, seleno-α-keto acids, small molecule thiols, mercapturic acid metabolites, indoles, and polyphenols. The findings are discussed in the context of putative endogenous HDAC inhibitors generated by intermediary metabolism (e.g. pyruvate), the yin–yang of HDAC inhibition versus HDAC activation, and the screening assays that might be most appropriate for discovery of novel HDAC inhibitors in the future.


Bioorganic & Medicinal Chemistry Letters | 2010

Design, synthesis and anticancer activity of piperazine hydroxamates and their histone deacetylase (HDAC) inhibitory activity.

Bhadaliya Chetan; Mahesh Bunha; Monika Jagrat; Barij Nayan Sinha; Philipp Saiko; Geraldine Graser; Thomas Szekeres; Ganapathy Raman; Praveen Rajendran; Dhatchana Moorthy; Arijit Basu; Venkatesan Jayaprakash

Six compounds were synthesized with piperazine in linker region and hydroxamate as Zinc Binding Group (ZBG). They were screened against three cancer cell-lines (NCIH460; HCT116; U251). Compounds 5c and 5f with GI(50) value of 9.33+/-1.3 microM and 12.03+/-4 microM, respectively, were tested for their inhibitory potential on hHDAC8. Compound 5c had IC(50) of 33.67 microM. Compounds were also screened for their anticancer activity against HL60 human promyelocytic leukemia cell line due to the presence of pharmacophoric features of RR inhibitors in them. Compound 5c had IC(50) of 0.6 microM at 48h.


Cell Death and Disease | 2014

HDAC8 and STAT3 repress BMF gene activity in colon cancer cells

Y Kang; H Nian; Praveen Rajendran; Eunjoo Kim; Wan Mohaiza Dashwood; Jt Pinto; La Boardman; Sn Thibodeau; Pj Limburg; Christiane V. Löhr; William H. Bisson; David E. Williams; Emily Ho; Roderick H. Dashwood

Histone deacetylase (HDAC) inhibitors are undergoing clinical trials as anticancer agents, but some exhibit resistance mechanisms linked to anti-apoptotic Bcl-2 functions, such as BH3-only protein silencing. HDAC inhibitors that reactivate BH3-only family members might offer an improved therapeutic approach. We show here that a novel seleno-α-keto acid triggers global histone acetylation in human colon cancer cells and activates apoptosis in a p21-independent manner. Profiling of multiple survival factors identified a critical role for the BH3-only member Bcl-2-modifying factor (Bmf). On the corresponding BMF gene promoter, loss of HDAC8 was associated with signal transducer and activator of transcription 3 (STAT3)/specificity protein 3 (Sp3) transcription factor exchange and recruitment of p300. Treatment with a p300 inhibitor or transient overexpression of exogenous HDAC8 interfered with BMF induction, whereas RNAi-mediated silencing of STAT3 activated the target gene. This is the first report to identify a direct target gene of HDAC8 repression, namely, BMF. Interestingly, the repressive role of HDAC8 could be uncoupled from HDAC1 to trigger Bmf-mediated apoptosis. These findings have implications for the development of HDAC8-selective inhibitors as therapeutic agents, beyond the reported involvement of HDAC8 in childhood malignancy.


Current Topics in Medicinal Chemistry | 2015

Histone and Non-Histone Targets of Dietary Deacetylase Inhibitors.

Eunah Kim; William H. Bisson; Christiane V. Löhr; David E. Williams; Emily Ho; Roderick H. Dashwood; Praveen Rajendran

Acetylation is an important, reversible post-translational modification affecting histone and non-histone proteins with critical roles in gene transcription, DNA replication, DNA repair, and cell cycle progression. Key regulatory enzymes include histone deacetylase (HDACs) and histone acetyltransferases (HATs). Overexpressed HDACs have been identified in many human cancers, resulting in repressed chromatin states that interfere with vital tumor suppressor functions. Inhibition of HDAC activity has been pursued as a mechanism for re-activating repressed genes in cancers, with some HDAC inhibitors showing promise in the clinical setting. Dietary compounds and their metabolites also have been shown to modulate HDAC activity or expression. Out of this body of research, attention increasingly has shifted towards non-histone targets of HDACs and HATs, such as transcriptions factors, hormone receptors, DNA repair proteins, and cytoskeletal components. These aspects are covered in present review, along with the possible clinical significance. Where such data are available, examples are cited from the literature of studies with short chain fatty acids, polyphenols, isoflavones, indoles, organosulfur compounds, organoselenium compounds, sesquiterpene lactones, isoflavones, and various miscellaneous agents. By virtue of their effects on both histone and non-histone proteins, dietary chemopreventive agents modulate the cellular acetylome in ways that are only now becoming apparent. A better understanding of the molecular mechanisms will likely enhance the potential to more effectively combat diseases harboring altered epigenetic landscapes and dysregulated protein signaling.


Molecular Nutrition & Food Research | 2017

A functional pseudogene, NMRAL2P, is regulated by Nrf2 and serves as a coactivator of NQO1 in sulforaphane‐treated colon cancer cells

Gavin S. Johnson; Jia Li; Laura M. Beaver; W. Mohaiza Dashwood; Deqiang Sun; Praveen Rajendran; David E. Williams; Emily Ho; Roderick H. Dashwood

SCOPE The anticancer agent sulforaphane (SFN) acts via multiple mechanisms to modulate gene expression, including the induction of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent signaling and the inhibition of histone deacetylase activity. Transcriptomics studies were performed in SFN-treated human colon cancer cells and in nontransformed colonic epithelial cells in order to pursue new mechanistic leads. METHODS AND RESULTS RNA-sequencing corroborated the expected changes in cancer-related pathways after SFN treatment. In addition to NAD(P)H quinone dehydrogenase 1 (NQO1) and other well-known Nrf2-dependent targets, SFN strongly induced the expression of Loc344887. This noncoding RNA was confirmed as a novel functional pseudogene for NmrA-like redox sensor 1, and was given the name NmrA-like redox sensor 2 pseudogene (NMRAL2P). Chromatin immunoprecipitation experiments corroborated the presence of Nrf2 interactions on the NMRAL2P genomic region, and interestingly, NMRAL2P also served as a coregulator of NQO1 in human colon cancer cells. Silencing of NMRAL2P via CRISPR/Cas9 genome-editing protected against SFN-mediated inhibition of cancer cell growth, colony formation, and migration. CONCLUSION NMRAL2P is the first functional pseudogene to be identified both as a direct transcriptional target of Nrf2, and as a downstream regulator of Nrf2-dependent NQO1 induction. Further studies are warranted on NMRAL2P-Nrf2 crosstalk and the associated mechanisms of gene regulation.


International Journal of Cancer | 2017

Oncogenic targets Mmp7, S100a9, Nppb and Aldh1a3 from transcriptome profiling of FAP and Pirc adenomas are downregulated in response to tumor suppression by Clotam

Furkan U. Ertem; Wenqian Zhang; Kyle Chang; Wan Mohaiza Dashwood; Praveen Rajendran; Deqiang Sun; Ala Abudayyeh; Eduardo Vilar; Maen Abdelrahim; Roderick H. Dashwood

Intervention strategies in familial adenomatous polyposis (FAP) patients and other high‐risk colorectal cancer (CRC) populations have highlighted a critical need for endoscopy combined with safe and effective preventive agents. We performed transcriptome profiling of colorectal adenomas from FAP patients and the polyposis in rat colon (Pirc) preclinical model, and prioritized molecular targets for prevention studies in vivo. At clinically relevant doses in the Pirc model, the drug Clotam (tolfenamic acid, TA) was highly effective at suppressing tumorigenesis both in the colon and in the small intestine, when administered alone or in combination with Sulindac. Cell proliferation in the colonic crypts was reduced significantly by TA, coincident with increased cleaved caspase‐3 and decreased Survivin, β‐catenin, cyclin D1 and matrix metalloproteinase 7. From the list of differentially expressed genes prioritized by transcriptome profiling, Mmp7, S100a9, Nppb and Aldh1a3 were defined as key oncogene candidates downregulated in colon tumors after TA treatment. Monthly colonoscopies revealed the rapid onset of tumor suppression by TA in the Pirc model, and the temporal changes in Mmp7, S100a9, Nppb and Aldh1a3, highlighting their value as potential early biomarkers for prevention in the clinical setting. We conclude that TA, an “old drug” repurposed from migraine, offers an exciting new therapeutic avenue in FAP and other high‐risk CRC patient populations.


European Journal of Medicinal Chemistry | 2016

Orally available stilbene derivatives as potent HDAC inhibitors with antiproliferative activities and antitumor effects in human tumor xenografts.

Virendra Kachhadia; Sridharan Rajagopal; Thanasekaran Ponpandian; Radhakrishnan Vignesh; Karnambaram Anandhan; Daivasigamani Prabhu; Praveen Rajendran; Saranya Nidhyanandan; Anshu Mittal Roy; Fakrudeen Ali Ahamed; Narayanan Surendran; Sriram Rajagopal; Shridhar Narayanan; Balasubramanian Gopalan

Herein we report the synthesis and activity of a novel class of HDAC inhibitors based on 2, 3-diphenyl acrylic acid derivatives. The compounds in this series have shown to be potent HDAC inhibitors possessing significant antiproliferative activity. Further compounds in this series were subjected to metabolic stability in human liver microsomes (HLM), mouse liver microsomes (MLM), and exhibits promising stability in both. These efforts culminated with the identification of a developmental candidate (5a), which displayed desirable PK/PD relationships, significant efficacy in the xenograft models and attractive ADME profiles.

Collaboration


Dive into the Praveen Rajendran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manu Jaggi

Dabur Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Rama Mukherjee

Dabur Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Anand C. Burman

Dabur Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily Ho

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anand Vardhan

Dabur Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Anu T. Singh

Dabur Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge