Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Preety Sharma is active.

Publication


Featured researches published by Preety Sharma.


Radiation Research | 2011

Effects of ionizing radiation on three-dimensional human vessel models: differential effects according to radiation quality and cellular development.

Peter W. Grabham; Burong Hu; Preety Sharma; Charles R. Geard

Abstract Little is known about the effects of space radiation on the human body. There are a number of potential chronic and acute effects, and one major target for noncarcinogenic effects is the human vasculature. Cellular stress, inflammatory response, and other radiation effects on endothelial cells may affect vascular function. This study was aimed at understanding the effects of space ionizing radiation on the formation and maintenance of capillary-like blood vessels. We used a 3D human vessel model created with human endothelial cells in a gel matrix to assess the effects of low-LET protons and high-LET iron ions. Iron ions were more damaging and caused significant reduction in the length of intact vessels in both developing and mature vessels at a dose of 80 cGy. Protons had no effect on mature vessels up to a dose of 3.2 Gy but did inhibit vessel formation at 80 cGy. Comparison with γ radiation showed that photons had even less effect, although, as with protons, developing vessels were more sensitive. Apoptosis assays showed that inhibition of vessel development or deterioration of mature vessels was not due to cell death by apoptosis even in the case of iron ions. These are the first data to show the effects of radiation with varying linear energy transfer on a human vessel model.


PLOS ONE | 2015

High Throughput Measurement of γH2AX DSB Repair Kinetics in a Healthy Human Population

Preety Sharma; Brian Ponnaiya; Maria Taveras; Igor Shuryak; Helen Turner; David J. Brenner

The Columbia University RABiT (Rapid Automated Biodosimetry Tool) quantifies DNA damage using fingerstick volumes of blood. One RABiT protocol quantifies the total γ-H2AX fluorescence per nucleus, a measure of DNA double strand breaks (DSB) by an immunofluorescent assay at a single time point. Using the recently extended RABiT system, that assays the γ-H2AX repair kinetics at multiple time points, the present small scale study followed its kinetics post irradiation at 0.5 h, 2 h, 4 h, 7 h and 24 h in lymphocytes from 94 healthy adults. The lymphocytes were irradiated ex vivo with 4 Gy γ rays using an external Cs-137 source. The effect of age, gender, race, ethnicity, alcohol use on the endogenous and post irradiation total γ-H2AX protein yields at various time points were statistically analyzed. The endogenous γ-H2AX levels were influenced by age, race and alcohol use within Hispanics. In response to radiation, induction of γ-H2AX yields at 0.5 h and peak formation at 2 h were independent of age, gender, ethnicity except for race and alcohol use that delayed the peak to 4 h time point. Despite the shift in the peak observed, the γ-H2AX yields reached close to baseline at 24 h for all groups. Age and race affected the rate of progression of the DSB repair soon after the yields reached maximum. Finally we show a positive correlation between endogenous γ-H2AX levels with radiation induced γ-H2AX yields (RIY) (r=0.257, P=0.02) and a negative correlation with residuals (r=-0.521, P=<0.0001). A positive correlation was also observed between RIY and DNA repair rate (r=0.634, P<0.0001). Our findings suggest age, race, ethnicity and alcohol use influence DSB γ-H2AX repair kinetics as measured by RABiT immunofluorescent assay.


Vascular Cell | 2013

Two distinct types of the inhibition of vasculogenesis by different species of charged particles

Peter W. Grabham; Preety Sharma; Alan Bigelow; Charles R. Geard

BackgroundCharged particle radiation is known to be more biologically effective than photon radiation. One example of this is the inhibition of the formation of human blood vessels. This effect is an important factor influencing human health and is relevant to space travel as well as to cancer radiotherapy. We have previously shown that ion particles with a high energy deposition, or linear energy transfer (LET) are more than four times more effective at disrupting mature vessel tissue models than particles with a lower LET. For vasculogenesis however, the relative biological effectiveness between particles is the same. This unexpected result prompted us to investigate whether the inhibition of vasculogenesis was occurring by distinct mechanisms.MethodsUsing 3-Dimensional human vessel models, we developed assays that determine at what stage angiogenesis is inhibited. Vessel morphology, the presence of motile tip structures, and changes in the matrix architecture were assessed. To confirm that the mechanisms are distinct, stimulation of Protein Kinase C (PKC) with phorbol ester (PMA) was employed to selectively restore vessel formation in cultures where early motile tip activity was inhibited.ResultsEndothelial cells in 3-D culture exposed to low LET protons failed to make connections with other cells but eventually developed a central lumen. Conversely, cells exposed to high LET Fe charged particles extended cellular processes and made connections to other cells but did not develop a central lumen. The microtubule and actin cytoskeletons indicated that motility at the extending tips of endothelial cells is inhibited by low LET but not high LET particles. Actin-rich protrusive structures that contain bundled microtubules showed a 65% decrease when exposed to low LET particles but not high LET particles, with commensurate changes in the matrix architecture. Stimulation of PKC with PMA restored tip motility and capillary formation in low but not high LET particle treated cultures.ConclusionLow LET charged particles inhibit the early stages of vasculogenesis when tip cells have motile protrusive structures and are creating pioneer guidance tunnels through the matrix. High LET charged particles do not affect the early stages of vasculogenesis but they do affect the later stages when the endothelial cells migrate to form tubes.


Vascular Cell | 2013

The effects of radiation on angiogenesis

Peter W. Grabham; Preety Sharma

The average human body contains tens of thousands of miles of vessels that permeate every tissue down to the microscopic level. This makes the human vasculature a prime target for an agent like radiation that originates from a source and passes through the body. Exposure to radiation released during nuclear accidents and explosions, or during cancer radiotherapy, is well known to cause vascular pathologies because of the ionizing effects of electromagnetic radiations (photons) such as gamma rays. There is however, another type of less well-known radiation – charged ion particles, and these atoms stripped of electrons, have different physical properties to the photons of electromagnetic radiation. They are either found in space or created on earth by particle collider facilities, and are of significant recent interest due to their enhanced effectiveness and increasing use in cancer radiotherapy, as well as a health risk to the growing number of people spending time in the space environment. Although there is to date, relatively few studies on the effects of charged particles on the vascular system, a very different picture of the biological effects of these particles compared to photons is beginning to emerge. These under researched biological effects of ion particles have a large impact on the health consequences of exposure. In this short review, we will discuss the effects of charged particles on an important biological process of the vascular system, angiogenesis, which creates and maintains the vasculature and is highly important in tumor vasculogenesis.


Microvascular Research | 2013

Short term effects of gamma radiation on endothelial barrier function: Uncoupling of PECAM-1

Preety Sharma; Thomas Templin; Peter W. Grabham

A limiting factor in the treatment of cancer with radiotherapy is the damage to surrounding normal tissue, particularly the vasculature. Vessel pathologies are a major feature of the side effects of radiotherapy and little is known about early events that could initiate subsequent diseases. We tested the hypothesis that gamma radiation has early damaging effects on the human endothelial barrier. Two models were used; Human Brain Microcapillary Endothelial Cells (HBMEC), and Human Umbilical Vein Endothelial Cells (HUVEC). Endpoints included Trans-Endothelial Electrical Resistance (TEER), barrier permeability to 10 kDa and 70 kDa tracer molecules, and the localization of F-actin, and junction proteins and the Platelet Endothelial Cell Adhesion Molecule (PECAM-1). Radiation induced a rapid and transient decrease in TEER at 3 h, with effects also seen at the radiotherapy doses. This dip in resistance correlated to the transient loss of PECAM-1 in discrete areas where cells often detached from the monolayer leaving gaps. Redistribution of PECAM-1 was also seen in 3-D human tissue models. By 6 h, the remaining cells had migrated to reseal the barrier, coincident with TEER returning to control levels. Resealed monolayers contained fewer cells per unit area and their barrier function was weakened as evidenced by an increased permeability over 24 h. This is the first demonstration of a transient and rapid effect of gamma radiation on human endothelial barriers that involves cell detachment and the loss of PECAM-1. Considering the association of cell adhesion molecules with vasculopathies, such an effect has the potential to be clinically relevant to the longer-term effects of radiotherapy.


PLOS ONE | 2015

Correction: High Throughput Measurement of γH2AX DSB Repair Kinetics in a Healthy Human Population

Preety Sharma; Brian Ponnaiya; Maria Taveras; Igor Shuryak; Helen Turner; David J. Brenner

In the Quantitative Modeling section of the Materials and Methods, there is an error in the first equation. Please view the complete, correct equation here: F = Fbac + Fres + Kprod T exp(−Kdec T)


Radiation Research | 2016

Short-Term Effects of Low-LET Radiation on the Endothelial Barrier: Uncoupling of PECAM-1 and the Production of Endothelial Microparticles

Thomas Templin; Preety Sharma; Peter Guida; Peter W. Grabham

A significant target for radiation-induced effects is the microvascular system, which is critical to healthy tissue function and its pathology is linked to disrupted endothelial barrier function. Low-linear energy transfer (LET) ionizing radiation is a source of noncancer pathologies in humans and little is known about the early events that could initiate subsequent diseases. However, it is well known that gamma radiation causes a very early disruption of the endothelial barrier at doses below those required for cytotoxic effects. After irradiation of human umbilical vein endothelial cells (HUVECs) to doses as low as 2 Gy, transendothelial electrical resistance (TEER) is transiently reduced at 3 h, and the platelet-derived endothothelial cell adhesion molecule (PECAM-1 or CD31) is uncoupled from the cells along with the release of endothelial microparticles (EMPs). In this study, we measured TEER reduction as an indicator of barrier function loss, and specifically examined the shedding of EMPs from human endothelial barrier models after a variety of low-LET irradiations, including photons and charged particles. Our findings showed two TEER responses, dependent on radiation type and environmental conditions. The first response was diminishing oscillations of TEER, which occurred during the first 10 h postirradiation. This response occurred after a 5 Gy proton or helium-ion (1 GeV/n) dose in addition to a 5 Gy gamma or X radiation dose. This occurred only in the presence of multiple growth factors and did not show a dose response, nor was it associated with EMP release. The second response was a single acute drop in TEER at 3 h after photon irradiation. Dose response was observed and was associated with the shedding of EMPs in 2D barrier cultures and in 3D vessel models. In this case, helium-ion and proton irradiations did not induce a drop in TEER or shedding of EMPs. The photon radiation effects was observed both in serum-free media and in the presence of multiple growth factors, indicating that it occurs under a range of environmental conditions. These results show an acute response of the human endothelial barrier that is relevant to photon irradiation. Significantly, it involves the release of EMPs, which have recently attracted attention due to their emerging clinical importance.


Journal of Radiation Research | 2014

Acute effects of ionizing radiation on human endothelial barrier function

Peter W. Grabham; Preety Sharma

The human vasculature is critical to healthy functioning of the tissues of the body and a major factor in maintaining homeostasis is the endothelial barrier. In the brain, the blood–brain barrier (BBB) is highly specialized in order to sustain the neural tissue. Here, we have examined the effects of radiation on BBB models using a unique variety of endpoints to assess barrier function. These include trans-endothelial electrical resistance (TEER), morphological effects, localization of adhesion and cell junction proteins (in two-dimensional monolayers and in three-dimensional tissue models) and permeability of molecules through the endothelial barrier. Two culture conditions were used to represent conditions on the inside or the lumen of vessels and conditions on the outside or ablumenal side of vessels. For the lumen, cells were cultured in serum and growth factor containing media, and for the ablumenal side of vessels, cells were cultured in serum-free defined media. Initial experiments with gamma rays in serum-free conditions revealed a previously unknown acute effect involving cell detachment and the loss of the clinically relevant cell adhesion molecule—cell platelet endothelial adhesion molecule (PECAM)-1 [ 1]. Gamma radiation (5 Gy) induced a rapid and transient decrease in TEER at 3 h, with effects also seen at the lower radiotherapy dose of 2 Gy. This dip in resistance correlated with the transient loss PECAM-1 in discrete areas where cells often detached from the monolayer leaving gaps. Loss in PECAM-1 occurred at least in part as detached microparticles. Redistribution of PECAM-1 microparticles was also seen in three-dimensional human tissue models. By 6 h, the remaining cells had migrated to reseal the barrier, coincident with TEER returning to control levels. Resealed monolayers contained fewer cells per unit area and their barrier function was weakened as corroborated by an increased permeability over 24 h. Because PECAM-1 is involved in barrier function and platelet aggregation, this effect is likely highly relevant to cancer radiotherapy using gamma rays. These studies were extended to include low linear energy transfer (LET) photons of X-rays and ion particles present in the space environment—low LET ion particles including high energy (1 GeV) protons and helium ions. X-rays under serum-free conditions also showed an acute response involving a dip in TEER at 3 h and the loss of PECAM-1 between cells as microparticles. Ion particles, however, did not show these effects of photons under serum-free conditions. Both protons and helium ions at doses up to 5 Gy did not produce this transient change in TEER or PECAM-1, although some longer term effects in TEER were noted. In the presence of serum and growth factors, however, all radiations tested showed short-term effects in TEER, that of a series of symmetrical peaks which diminished in size over several hours. For 1 GeV protons and helium ions, this effect could be fitted to an equation for under-damped oscillation, a pattern typical of a mechanism for timing of events in periodic processes. For gamma and X-rays, the underdamped oscillation was present but superimposed on a drop in resistance at 3 h similar to that seen in serum-free conditions. In conclusion, we have shown two acute effects of low LET radiation on the human endothelial barrier. First, a short-term effect of photons but not ion particles involving a single dip in TEER and the loss of PECAM-1 at 3 h after irradiation, and second an underdamped oscillation of TEER induced by both photons and ion particles that to date does not appear to be associated with the loss of PECAM-1 or any other junction molecules.


Journal of Radiation Research | 2014

Distinct mechanisms of the inhibition of vasculogenesis by different species of ionizing particles

Peter W. Grabham; Preety Sharma; Alan Bigelow; Charles R. Geard

The human vasculature includes a vast network of microcapillaries networking the body and is a major target for non-carcinogenic effects of space radiation in the body. The brain microvascular system is crucial to healthy functioning of the brain and its pathology is not only a primary event in a range of neurodegenerative diseases but also an important influencing factor in many others. The vasculature is maintained by angiogenesis regenerating vessels as they are needed, this is particularly relevant if the blood–brain barrier is damaged by agents such as space radiation, thereby creating the need for angiogenic regeneration. The resulting lack of vasculature due to the inhibition of re-growth of vessels can, in turn, lead to a negative feedback loop and further pathologies. Using three-dimensional human vessel cultures with human umbilical vein and brain microvascular endothelial cells, we have developed assays that determine at what stage angiogenesis is inhibited by ionizing radiation. The relative biological effect of high linear energy transfer (LET) 1 GeV Fe ions compared with low LET 1 GeV protons is only one for developing vessels but greater than four for mature vessels. This action of low LET protons on developing vessels was surprisingly effective (50% inhibition with 40 cGy exposure) and together with the effect of high LET ions may represent a significant hazard in the space environment. The morphology of developing vessels 5 days after exposure showed significant differences that suggest distinct mechanisms of inhibition. Cells exposed to protons failed to make connections with other cells. Conversely, cells exposed to Fe ions extended cellular processes and made connections to other cells but did not develop a central lumen. The microtubule and actin cytoskeletons showed differences indicating that motility at the extending tips of endothelial cells is inhibited by protons but not Fe ions. Actin-rich protrusive structures that contain bundled and dynamic microtubules showed a 65% decrease when exposed to high-energy protons but not with the same dose of high-energy Fe ions. Since protein kinase C (PKC) has long been known to stimulate angiogenesis, we hypothesized that rescue of the capillary phenotype after proton exposure would be possible by stimulating PKC before irradiation. One-day-old vessel cultures were treated with 30 and 60 nM phorbol ester (PMA) 15 min before irradiation. Stimulation of PKC restored capillary formation in proton-treated cultures but not in Fe ion-treated cultures. More specifically, stimulation of PKC by PMA was able to restore the tip motility that was inhibited by low LET ions [ 1]. Further studies with various charged particles showed that low LET ion particles (Proton and He ions) with an LET lower or equal to 1 keV/μm inhibit vasculogenesis in the same way as protons. Higher LET charged particles (Silicon 1GeV, Oxygen 250 MeV and 1 GeV and Carbon 290 MeV and 1 GeV) with an LET ≥8 keV/μm inhibit vasculogenesis in the same way as Fe ions. In conclusion, we have shown that low and high LET ions inhibit the formation of brain capillaries by different mechanisms. For low LET ions, inhibition involves regulation of PKC-dependent motile tips leading to a failure of cellular processes to migrate through the matrix and meet up with other processes. For high LET ions, the cells fail to complete angiogenesis by not migrating and forming tubular structures. This complexity of response opens up possibilities of greater control over angiogenesis and the resulting pathologies during coincident exposure or therapy. For exposure in space, knowledge of these mechanisms will enable more precise risk assessment and mitigation strategies. For radiotherapy, treatment could be manipulated to utilize the radiation effectively.


Life sciences in space research | 2014

Effects of Fe particle irradiation on human endothelial barrier structure and function

Preety Sharma; Peter Guida; Peter W. Grabham

Collaboration


Dive into the Preety Sharma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Brenner

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Helen Turner

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Taveras

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter Guida

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge