Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Preeyaporn Koedrith is active.

Publication


Featured researches published by Preeyaporn Koedrith.


International Journal of Molecular Sciences | 2011

Advances in carcinogenic metal toxicity and potential molecular markers.

Preeyaporn Koedrith; Young Rok Seo

Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system’s ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others) with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase) as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression.


New Biotechnology | 2012

CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae

Suthee Benjaphokee; Preeyaporn Koedrith; Choowong Auesukaree; Thipa Asvarak; Minetaka Sugiyama; Yoshinobu Kaneko; Chuenchit Boonchird; Satoshi Harashima

Use of thermotolerant strains is a promising way to reduce the cost of maintaining optimum temperatures in the fermentation process. Here we investigated genetically a Saccharomyces cerevisiae strain showing a high-temperature (41°C) growth (Htg(+)) phenotype and the result suggested that the Htg(+) phenotype of this Htg(+) strain is dominant and under the control of most probably six genes, designated HTG1 to HTG6. As compared with a Htg(-) strain, the Htg(+) strain showed a higher survival rate after exposure to heat shock at 48°C. Moreover, the Htg(+) strain exhibited a significantly high content of trehalose when cultured at high temperature and stronger resistance to Congo Red, an agent that interferes with cell wall construction. These results suggest that a strengthened cell wall in combination with increased trehalose accumulation can support growth at high temperature. The gene CDC19, encoding pyruvate kinase, was cloned as the HTG2 gene. The CDC19 allele from the Htg(+) strain possessed five base changes in its upstream region, and two base changes resulting in silent mutations in its coding region. Interestingly, the latter base changes are probably responsible for the increased pyruvate kinase activity of the Htg(+) strain. The possible mechanism leading to this increased activity and to the Htg(+) phenotype, which may lead to the activation of energy metabolism to maintain cellular homeostasis, is discussed.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2014

Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests

Jee Young Kwon; Seung Young Lee; Preeyaporn Koedrith; Jong Yun Lee; Kyoung-Min Kim; Jae-Min Oh; Sung Ik Yang; Meyoung-Kon Kim; Jong Kwon Lee; Jayoung Jeong; Eun Ho Maeng; Beam Jun Lee; Young Rok Seo

The industrial application of nanotechnology, particularly using zinc oxide (ZnO), has grown rapidly, including products such as cosmetics, food, rubber, paints, and plastics. However, despite increasing population exposure to ZnO, its potential genotoxicity remains controversial. The biological effects of nanoparticles depend on their physicochemical properties. Preparations with well-defined physico-chemical properties and standardized test methods are required for assessing the genotoxicity of nanoparticles. In this study, we have evaluated the genotoxicity of four kinds of ZnO nanoparticles: 20nm and 70nm size, positively or negatively charged. Four different genotoxicity tests (bacterial mutagenicity assay, in vitro chromosomal aberration test, in vivo comet assay, and in vivo micronucleus test, were conducted, following Organization for Economic Cooperation and Development (OECD) test guidelines with good laboratory practice (GLP) procedures. No statistically significant differences from the solvent controls were observed. These results suggest that surface-modified ZnO nanoparticles do not induce genotoxicity in in vitro or in vivo test systems.


Journal of Bioscience and Bioengineering | 2012

Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits.

Choowong Auesukaree; Preeyaporn Koedrith; Pornpon Saenpayavai; Thipa Asvarak; Suthee Benjaphokee; Minetaka Sugiyama; Yoshinobu Kaneko; Satoshi Harashima; Chuenchit Boonchird

For industrial applications, fermentation of ethanol at high temperature offers advantages such as reduction in cooling costs, reduced risk of microbial contamination and higher efficiency of fermentation processes including saccharification and continuous ethanol stripping. Three thermotolerant Saccharomyces cerevisiae isolates (C3723, C3751 and C3867) from Thai fruits were capable of growing and producing 38 g/L ethanol up to 41°C. Based on genetic analyses, these isolates were prototrophic and homothallic, with dominant homothallic and thermotolerant phenotypes. After short-term (30 min) and long-term (12 h) exposure at 37°C, expression levels increased for the heat stress-response genes HSP26, SSA4, HSP82, and HSP104 encoding the heat shock proteins small HSP, HSP70, HSP90 and the HSP100 family, respectively. In isolates C3723 and C3867, expression was significantly higher than that in reference isolates W303 and TISTR5606 for TPS1 encoding trehalose-6-phosphate synthase, NTH1 encoding neutral trehalase and GSY1 encoding glycogen synthase. The results suggested that continuous high expression of heat stress-response genes was important for the long-term, heat stress tolerance of these thermotolerant isolates.


International Journal of Molecular Sciences | 2015

Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism.

Hyo Jeong Kim; Preeyaporn Koedrith; Young Rok Seo

Due to the rapid advent in genomics technologies and attention to ecological risk assessment, the term “ecotoxicogenomics” has recently emerged to describe integration of omics studies (i.e., transcriptomics, proteomics, metabolomics, and epigenomics) into ecotoxicological fields. Ecotoxicogenomics is defined as study of an entire set of genes or proteins expression in ecological organisms to provide insight on environmental toxicity, offering benefit in ecological risk assessment. Indeed, Daphnia is a model species to study aquatic environmental toxicity designated in the Organization for Economic Co-operation and Development’s toxicity test guideline and to investigate expression patterns using ecotoxicology-oriented genomics tools. Our main purpose is to demonstrate the potential utility of gene expression profiling in ecotoxicology by identifying novel biomarkers and relevant modes of toxicity in Daphnia magna. These approaches enable us to address adverse phenotypic outcomes linked to particular gene function(s) and mechanistic understanding of aquatic ecotoxicology as well as exploration of useful biomarkers. Furthermore, key challenges that currently face aquatic ecotoxicology (e.g., predicting toxicant responses among a broad spectrum of phytogenetic groups, predicting impact of temporal exposure on toxicant responses) necessitate the parallel use of other model organisms, both aquatic and terrestrial. By investigating gene expression profiling in an environmentally important organism, this provides viable support for the utility of ecotoxicogenomics.


International Journal of Nanomedicine | 2014

Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/ genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations

Jee Young Kwon; Preeyaporn Koedrith; Young Rok Seo

Engineered nanoparticles (NPs) are widely used in many sectors, such as food, medicine, military, and sport, but their unique characteristics may cause deleterious health effects. Close attention is being paid to metal NP genotoxicity; however, NP genotoxic/carcinogenic effects and the underlying mechanisms remain to be elucidated. In this review, we address some metal and metal oxide NPs of interest and current genotoxicity tests in vitro and in vivo. Metal NPs can cause DNA damage such as chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. We also discuss several parameters that may affect genotoxic response, including physicochemical properties, widely used assays/end point tests, and experimental conditions. Although potential biomarkers of nanogenotoxicity or carcinogenicity are suggested, inconsistent findings in the literature render results inconclusive due to a variety of factors. Advantages and limitations related to different methods for investigating genotoxicity are described, and future directions and recommendations for better understanding genotoxic potential are addressed.


The Scientific World Journal | 2015

Recent Trends in Rapid Environmental Monitoring of Pathogens and Toxicants: Potential of Nanoparticle-Based Biosensor and Applications

Preeyaporn Koedrith; Thalisa Thasiphu; Jong-Il Weon; Rattana Boonprasert; Kooranee Tuitemwong; Pravate Tuitemwong

Of global concern, environmental pollution adversely affects human health and socioeconomic development. The presence of environmental contaminants, especially bacterial, viral, and parasitic pathogens and their toxins as well as chemical substances, poses serious public health concerns. Nanoparticle-based biosensors are considered as potential tools for rapid, specific, and highly sensitive detection of the analyte of interest (both biotic and abiotic contaminants). In particular, there are several limitations of conventional detection methods for water-borne pathogens due to low concentrations and interference with various enzymatic inhibitors in the environmental samples. The increase of cells to detection levels requires long incubation time. This review describes current state of biosensor nanotechnology, the advantage over conventional detection methods, and the challenges due to testing of environmental samples. The major approach is to use nanoparticles as signal reporter to increase output rather than spending time to increase cell concentrations. Trends in future development of novel detection devices and their advantages over other environmental monitoring methodologies are also discussed.


Molecular & Cellular Toxicology | 2014

Recent toxicological investigations of metal or metal oxide nanoparticles in mammalian models in vitro and in vivo: DNA damaging potential, and relevant physicochemical characteristics

Preeyaporn Koedrith; Rattana Boonprasert; Jee Young Kwon; Im-Soon Kim; Young Rok Seo

Concomitant with the increase in production and application of various nanomaterials, researches on their cytotoxic and genotoxic potential have become well established, as exposure to these nanoscaled materials may contribute to detrimental health effects. Positive indications of the damaging effects of nanoparticles on DNA are likely to be inconsistent in in vitro systems, and thus the implementation of in vivo investigations has been achieved. This review summarizes the current results, both in vitro and in vivo, of the genotoxic effects of potential metal or metal oxide nanoparticles, including the oxides of aluminium, iron, silica, titanium, and zinc, as well as silver, gold, cobalt, quantum dots, and so forth. They present indications of different types of DNA damage, ranging from chromosomal aberrations, through DNA strand breaks, oxidative DNA damage, to mutations. Their toxicological profiles are definitely associated with physicochemical characters, depending upon the characterization methods by which they are analyzed, in particular, microscopy techniques. Besides physicochemical properties, we also discuss significant parameters that may influence genotoxic response, including toxicity assays/endpoint tests, exposure duration and route of exposure, and experimental conditions. We describe advantages and disadvantages of particular characterization methods, as well as the appropriateness of methodologies for investigating physicochemical characters. Therefore, recommendations on particle characterization are further emphasized, to provide better understanding of genotoxic potential.


Molecular & Cellular Toxicology | 2015

Integrative toxicogenomics-based approach to risk assessment of heavy metal mixtures/complexes: strategies and challenges

Preeyaporn Koedrith; Hye Lim Kim; Young Rok Seo

Human exposure to metallic elements ranging from single metal ionic salt, metal compounds, and metal mixtures that may occur naturally, as well as from human activities and industrial applications. Some metals including arsenic, cadmium, chromium, lead, mercury, and nickel in both single element and mixture forms render confounding health effects and ultimately cause cancer. Studies of heavy metal-mediated global aberration using non-targeted multiple toxicogenomic technologies might help to elucidate environmentally relevant disorders, as well as to monitor biomarker of exposure and predict the health risk toward environmental toxicants. We describe recent toxicogenomic studies on heavy metal mixtures as well as relevant mechanism of toxicity and molecular signatures. On the basis of system toxicology approach, integrative toxicogenomic and bioinformatic tools might represent the biological pathways linked to disorders. We also strongly suggest that the toxicogenomic data can be adopted to risk assessment process. Furthermore, we mention challenges in utility of toxicogenomic studies data to risk assessment process of toxicity of metal mixtures. Overall, we realize that application and interpretation of toxicogenomic data regarding to their strengths and weaknesses would potentiate chemical risk assessment.


Oncology Reports | 2013

Identification of molecular candidates and interaction networks via integrative toxicogenomic analysis in a human cell line following low-dose exposure to the carcinogenic metals cadmium and nickel.

Jee Young Kwon; Jong-Il Weon; Preeyaporn Koedrith; Kang-Sik Park; Im Soon Kim; Young Rok Seo

Cadmium and nickel have been classified as carcinogenic to humans by the World Health Organizations International Agency for Research on Cancer. Given their prevalence in the environment, the fact that cadmium and nickel may cause diseases including cancer even at low doses is a cause for concern. However, the exact mechanisms underlying the toxicological effects induced by low-dose exposure to cadmium and nickel remain to be elucidated. Furthermore, it has recently been recognized that integrative analysis of DNA, mRNA and proteins is required to discover biomarkers and signaling networks relevant to human toxicant exposure. In the present study, we examined the deleterious effects of chronic low-dose exposure of either cadmium or nickel on global profiling of DNA copy number variation, mRNA and proteins. Array comparative genomic hybridization, gene expression microarray and functional proteomics were conducted, and a bioinformatics tool, which predicted signaling pathways, was applied to integrate data for each heavy metal separately and together. We found distinctive signaling networks associated with subchronic low-dose exposure to cadmium and nickel, and identified pathways common to both. ACTB, HSP90AA1, HSPA5 and HSPA8, which are key mediators of pathways related to apoptosis, proliferation and neoplastic processes, were key mediators of the same pathways in low-dose nickel and cadmium exposure in particular. CASP-associated signaling pathways involving CASP3, CASP7 and CASP9 were observed in cadmium-exposed cells. We found that HSP90AA1, one of the main modulators, interacted with HIF1A, AR and BCL2 in nickel-exposed cells. Interestingly, we found that HSP90AA1 was involved in the BCL2-associated apoptotic pathway in the nickel-only data, whereas this gene interacted with several genes functioning in CASP-associated apoptotic signaling in the cadmium-only data. Additionally, JUN and FASN were main modulators in nickel-responsive signaling pathways. Our results provide valuable biomarkers and distinctive signaling networks that responded to subchronic low-dose exposure to cadmium and nickel.

Collaboration


Dive into the Preeyaporn Koedrith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arin Ngamniyom

Srinakharinwirot University

View shared research outputs
Top Co-Authors

Avatar

Busaba Panyarachun

Srinakharinwirot University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Panupong Puttarak

Prince of Songkla University

View shared research outputs
Researchain Logo
Decentralizing Knowledge