Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark T. Dransfield is active.

Publication


Featured researches published by Mark T. Dransfield.


The New England Journal of Medicine | 2011

Azithromycin for prevention of exacerbations of COPD.

Richard K. Albert; John E. Connett; William C. Bailey; Richard Casaburi; J. Allen D. Cooper; Gerard J. Criner; Jeffrey L. Curtis; Mark T. Dransfield; MeiLan K. Han; Stephen C. Lazarus; Barry J. Make; Nathaniel Marchetti; Fernando J. Martinez; Nancy E. Madinger; Charlene McEvoy; Dennis E. Niewoehner; Janos Porsasz; Connie S. Price; John J. Reilly; Paul D. Scanlon; Frank C. Sciurba; Steven M. Scharf; George R. Washko; Prescott G. Woodruff; Nicholas R. Anthonisen

BACKGROUND Acute exacerbations adversely affect patients with chronic obstructive pulmonary disease (COPD). Macrolide antibiotics benefit patients with a variety of inflammatory airway diseases. METHODS We performed a randomized trial to determine whether azithromycin decreased the frequency of exacerbations in participants with COPD who had an increased risk of exacerbations but no hearing impairment, resting tachycardia, or apparent risk of prolongation of the corrected QT interval. RESULTS A total of 1577 subjects were screened; 1142 (72%) were randomly assigned to receive azithromycin, at a dose of 250 mg daily (570 participants), or placebo (572 participants) for 1 year in addition to their usual care. The rate of 1-year follow-up was 89% in the azithromycin group and 90% in the placebo group. The median time to the first exacerbation was 266 days (95% confidence interval [CI], 227 to 313) among participants receiving azithromycin, as compared with 174 days (95% CI, 143 to 215) among participants receiving placebo (P<0.001). The frequency of exacerbations was 1.48 exacerbations per patient-year in the azithromycin group, as compared with 1.83 per patient-year in the placebo group (P=0.01), and the hazard ratio for having an acute exacerbation of COPD per patient-year in the azithromycin group was 0.73 (95% CI, 0.63 to 0.84; P<0.001). The scores on the St. Georges Respiratory Questionnaire (on a scale of 0 to 100, with lower scores indicating better functioning) improved more in the azithromycin group than in the placebo group (a mean [±SD] decrease of 2.8±12.8 vs. 0.6±11.4, P=0.004); the percentage of participants with more than the minimal clinically important difference of -4 units was 43% in the azithromycin group, as compared with 36% in the placebo group (P=0.03). Hearing decrements were more common in the azithromycin group than in the placebo group (25% vs. 20%, P=0.04). CONCLUSIONS Among selected subjects with COPD, azithromycin taken daily for 1 year, when added to usual treatment, decreased the frequency of exacerbations and improved quality of life but caused hearing decrements in a small percentage of subjects. Although this intervention could change microbial resistance patterns, the effect of this change is not known. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT00325897.).


The New England Journal of Medicine | 2012

Pulmonary arterial enlargement and acute exacerbations of COPD

J. Michael Wells; George R. Washko; MeiLan K. Han; Naseer Abbas; Hrudaya Nath; A. James Mamary; Elizabeth A. Regan; William C. Bailey; Fernando J. Martinez; Elizabeth Westfall; Terri H. Beaty; Douglas Curran-Everett; Jeffrey L. Curtis; John E. Hokanson; David A. Lynch; Barry J. Make; James D. Crapo; Edwin K. Silverman; Russell P. Bowler; Mark T. Dransfield

BACKGROUND Exacerbations of chronic obstructive pulmonary disease (COPD) are associated with accelerated loss of lung function and death. Identification of patients at risk for these events, particularly those requiring hospitalization, is of major importance. Severe pulmonary hypertension is an important complication of advanced COPD and predicts acute exacerbations, though pulmonary vascular abnormalities also occur early in the course of the disease. We hypothesized that a computed tomographic (CT) metric of pulmonary vascular disease (pulmonary artery enlargement, as determined by a ratio of the diameter of the pulmonary artery to the diameter of the aorta [PA:A ratio] of >1) would be associated with severe COPD exacerbations. METHODS We conducted a multicenter, observational trial that enrolled current and former smokers with COPD. We determined the association between a PA:A ratio of more than 1 and a history at enrollment of severe exacerbations requiring hospitalization and then examined the usefulness of the ratio as a predictor of these events in a longitudinal follow-up of this cohort, as well as in an external validation cohort. We used logistic-regression and zero-inflated negative binomial regression analyses and adjusted for known risk factors for exacerbation. RESULTS Multivariate logistic-regression analysis showed a significant association between a PA:A ratio of more than 1 and a history of severe exacerbations at the time of enrollment in the trial (odds ratio, 4.78; 95% confidence interval [CI], 3.43 to 6.65; P<0.001). A PA:A ratio of more than 1 was also independently associated with an increased risk of future severe exacerbations in both the trial cohort (odds ratio, 3.44; 95% CI, 2.78 to 4.25; P<0.001) and the external validation cohort (odds ratio, 2.80; 95% CI, 2.11 to 3.71; P<0.001). In both cohorts, among all the variables analyzed, a PA:A ratio of more than 1 had the strongest association with severe exacerbations. CONCLUSIONS Pulmonary artery enlargement (a PA:A ratio of >1), as detected by CT, was associated with severe exacerbations of COPD. (Funded by the National Heart, Lung, and Blood Institute; ClinicalTrials.gov numbers, NCT00608764 and NCT00292552.).


The Lancet Respiratory Medicine | 2013

Once-daily inhaled fluticasone furoate and vilanterol versus vilanterol only for prevention of exacerbations of COPD: two replicate double-blind, parallel-group, randomised controlled trials

Mark T. Dransfield; Jean Bourbeau; Paul W. Jones; Nicola A. Hanania; Donald A. Mahler; Jørgen Vestbo; Andrew Wachtel; Fernando J. Martinez; Frank Barnhart; Lisa Sanford; Sally Lettis; Courtney Crim; Peter Calverley

BACKGROUND Whether the combination of a once-daily inhaled corticosteroid with a once-daily longacting β(2) agonist is more protective than a once-daily longacting β(2) agonist alone against exacerbations of chronic obstructive pulmonary disease (COPD) is unknown. We hypothesised that fluticasone furoate and vilanterol would prevent more exacerbations than would vilanterol alone. METHODS We did two replicate double-blind parallel-group 1 year trials. Both studies began on Sept 25, 2009. Study 1 ended on Oct 31, 2011, and study 2 on Oct 17, 2011. Eligible patients were aged 40 years or older, had a history of COPD, a smoking history of 10 or more pack-years, a ratio of forced expiratory volume in 1 s (FEV(1)) to forced vital capacity of 0·70 or less after bronchodilators (and an FEV(1) of 70% or less of predicted), and a documented history of one or more moderate or severe disease exacerbations in the year before screening. Patients were randomly assigned (1:1:1:1) on the basis of the Registration and Medication Ordering System to 25 μg vilanterol alone or 25 μg vilanterol combined with either 50 μg, 100 μg, or 200 μg fluticasone furoate once daily. Our primary endpoint was the yearly rate of moderate and severe exacerbations. The trials were analysed separately and a pooled analysis was also done. These trials are registered with ClinicalTrials.gov (NCT01009463 and NCT01017952). FINDINGS 1622 patients in study 1 and 1633 patients in study 2 were randomly assigned. In study 1, no significant difference in exacerbation rate was noted between the 200/25 μg fluticasone furoate/vilanterol group and the vilanterol only group (mean 0·90 events vs 1·05 events per year; ratio 0·9 [95% CI 0·7-1·0]). Because of the statistical hierarchy used, we could not infer significance for the 50 μg and 100 μg groups. In study 2, significantly fewer moderate and severe exacerbations were noted in all fluticasone furoate/vilanterol groups than in the vilanterol only group (p=0·0398 for the 50 μg group, 0·0244 for the 100 μg group, and 0·0004 for the 200 μg group). In the pooled analysis, significantly fewer moderate and severe exacerbations were noted in all fluticasone furoate/vilanterol groups than in the vilanterol only group (0·0141 for the 50 μg group, <0·0001 for the 100 μg group, and 0·0003 for the 200 μg group). Nasopharyngitis was the most frequently reported adverse event in both studies. Pneumonia and fractures were reported more frequently with fluticasone furoate and vilanterol than with vilanterol alone. Eight deaths from pneumonia were noted in the fluticasone furoate/vilanterol groups compared with none in the vilanterol only group. INTERPRETATION Addition of fluticasone furoate to vilanterol was associated with a decreased rate of moderate and severe exacerbations of COPD in patients with a history of exacerbation, but was also associated with an increased pneumonia risk. FUNDING GlaxoSmithKline.


The New England Journal of Medicine | 2014

Simvastatin for the Prevention of Exacerbations in Moderate-to-Severe COPD

Gerard J. Criner; John E. Connett; Shawn D. Aaron; Richard K. Albert; William C. Bailey; Richard Casaburi; J. A D Cooper; Jeffrey L. Curtis; Mark T. Dransfield; MeiLan K. Han; Barry J. Make; Nathaniel Marchetti; Fernando J. Martinez; Dennis E. Niewoehner; Paul D. Scanlon; Frank C. Sciurba; Steven M. Scharf; Don D. Sin; Helen Voelker; George R. Washko; Prescott G. Woodruff; Stephen C. Lazarus

BACKGROUND Retrospective studies have shown that statins decrease the rate and severity of exacerbations, the rate of hospitalization, and mortality in chronic obstructive pulmonary disease (COPD). We prospectively studied the efficacy of simvastatin in preventing exacerbations in a large, multicenter, randomized trial. METHODS We designed the Prospective Randomized Placebo-Controlled Trial of Simvastatin in the Prevention of COPD Exacerbations (STATCOPE) as a randomized, controlled trial of simvastatin (at a daily dose of 40 mg) versus placebo, with annual exacerbation rates as the primary outcome. Patients were eligible if they were 40 to 80 years of age, had COPD (defined by a forced expiratory volume in 1 second [FEV1] of less than 80% and a ratio of FEV1 to forced vital capacity of less than 70%), and had a smoking history of 10 or more pack-years, were receiving supplemental oxygen or treatment with glucocorticoids or antibiotic agents, or had had an emergency department visit or hospitalization for COPD within the past year. Patients with diabetes or cardiovascular disease and those who were taking statins or who required statins on the basis of Adult Treatment Panel III criteria were excluded. Participants were treated from 12 to 36 months at 45 centers. RESULTS A total of 885 participants with COPD were enrolled for approximately 641 days; 44% of the patients were women. The patients had a mean (±SD) age of 62.2±8.4 years, an FEV1 that was 41.6±17.7% of the predicted value, and a smoking history of 50.6±27.4 pack-years. At the time of study closeout, the low-density lipoprotein cholesterol levels were lower in the simvastatin-treated patients than in those who received placebo. The mean number of exacerbations per person-year was similar in the simvastatin and placebo groups: 1.36±1.61 exacerbations and 1.39±1.73 exacerbations, respectively (P=0.54). The median number of days to the first exacerbation was also similar: 223 days (95% confidence interval [CI], 195 to 275) and 231 days (95% CI, 193 to 303), respectively (P=0.34). The number of nonfatal serious adverse events per person-year was similar, as well: 0.63 events with simvastatin and 0.62 events with placebo. There were 30 deaths in the placebo group and 28 in the simvastatin group (P=0.89). CONCLUSIONS Simvastatin at a daily dose of 40 mg did not affect exacerbation rates or the time to a first exacerbation in patients with COPD who were at high risk for exacerbations. (Funded by the National Heart, Lung, and Blood Institute and the Canadian Institutes of Health Research; STATCOPE ClinicalTrials.gov number, NCT01061671.).


Thorax | 2008

Use of β blockers and the risk of death in hospitalised patients with acute exacerbations of COPD

Mark T. Dransfield; Steven M. Rowe; James E. Johnson; William C. Bailey; Lynn B. Gerald

Background: Cardiovascular disease is a major cause of death in patients with chronic obstructive pulmonary disease (COPD) and predicts hospitalisation for acute exacerbation, in-hospital death and post-discharge mortality. Although β blockers improve cardiovascular outcomes, patients with COPD often do not receive them owing to concerns about possible adverse pulmonary effects. There are no published data about β blocker use among inpatients with COPD exacerbations. A study was undertaken to identify factors associated with β blocker use in this setting and to determine whether their use is associated with decreased in-hospital mortality. Methods: Administrative data from the University of Alabama Hospital were reviewed and patients admitted between October 1999 and September 2006 with an acute exacerbation of COPD as a primary diagnosis or as a secondary diagnosis with a primary diagnosis of acute respiratory failure were identified. Demographic data, co-morbidities and medication use were recorded and subjects receiving β blockers were compared with those who did not. Multivariate regression analysis was performed to determine predictors of in-hospital death after controlling for known covariates and the propensity to receive β blockers. Results: 825 patients met the inclusion criteria. In-hospital mortality was 5.2%. Those receiving β blockers (n = 142) were older and more frequently had cardiovascular disease than those who did not. In multivariate analysis adjusting for potential confounders including the propensity score, β blocker use was associated with reduced mortality (OR = 0.39; 95% CI 0.14 to 0.99). Age, length of stay, number of prior exacerbations, the presence of respiratory failure, congestive heart failure, cerebrovascular disease or liver disease also predicted in-hospital mortality (p<0.05). Conclusions: The use of β blockers by inpatients with exacerbations of COPD is well tolerated and may be associated with reduced mortality. The potential protective effect of β blockers in this population warrants further study.


Chest | 2015

Prevention of acute exacerbations of COPD: American College of Chest Physicians and Canadian Thoracic Society Guideline.

Gerard J. Criner; Jean Bourbeau; Rebecca L. Diekemper; Daniel R. Ouellette; Donna Goodridge; Paul Hernandez; Kristen Curren; Meyer Balter; Mohit Bhutani; Pat G. Camp; Bartolome R. Celli; Gail Dechman; Mark T. Dransfield; Stanley B. Fiel; Marilyn G. Foreman; Nicola A. Hanania; Belinda Ireland; Nathaniel Marchetti; Darcy Marciniuk; Richard A. Mularski; Joseph Ornelas; Jeremy Road; Michael K. Stickland

BACKGROUND COPD is a major cause of morbidity and mortality in the United States as well as throughout the rest of the world. An exacerbation of COPD (periodic escalations of symptoms of cough, dyspnea, and sputum production) is a major contributor to worsening lung function, impairment in quality of life, need for urgent care or hospitalization, and cost of care in COPD. Research conducted over the past decade has contributed much to our current understanding of the pathogenesis and treatment of COPD. Additionally, an evolving literature has accumulated about the prevention of acute exacerbations. METHODS In recognition of the importance of preventing exacerbations in patients with COPD, the American College of Chest Physicians (CHEST) and Canadian Thoracic Society (CTS) joint evidence-based guideline (AECOPD Guideline) was developed to provide a practical, clinically useful document to describe the current state of knowledge regarding the prevention of acute exacerbations according to major categories of prevention therapies. Three key clinical questions developed using the PICO (population, intervention, comparator, and outcome) format addressed the prevention of acute exacerbations of COPD: nonpharmacologic therapies, inhaled therapies, and oral therapies. We used recognized document evaluation tools to assess and choose the most appropriate studies and to extract meaningful data and grade the level of evidence to support the recommendations in each PICO question in a balanced and unbiased fashion. RESULTS The AECOPD Guideline is unique not only for its topic, the prevention of acute exacerbations of COPD, but also for the first-in-kind partnership between two of the largest thoracic societies in North America. The CHEST Guidelines Oversight Committee in partnership with the CTS COPD Clinical Assembly launched this project with the objective that a systematic review and critical evaluation of the published literature by clinical experts and researchers in the field of COPD would lead to a series of recommendations to assist clinicians in their management of the patient with COPD. CONCLUSIONS This guideline is unique because it provides an up-to-date, rigorous, evidence-based analysis of current randomized controlled trial data regarding the prevention of COPD exacerbations.


The Lancet Respiratory Medicine | 2013

GOLD 2011 disease severity classification in COPDGene: A prospective cohort study

MeiLan K. Han; Hana Muellerova; Douglas Curran-Everett; Mark T. Dransfield; George R. Washko; Elizabeth A. Regan; Russell P. Bowler; Terri H. Beaty; John E. Hokanson; David A. Lynch; Paul W. Jones; Antonio Anzueto; Fernando J. Martinez; James D. Crapo; Edwin K. Silverman; Barry J. Make

BACKGROUND The 2011 GOLD (Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease [COPD]) consensus report uses symptoms, exacerbation history, and forced expiratory volume (FEV1)% to categorise patients according to disease severity and guide treatment. We aimed to assess both the influence of symptom instrument choice on patient category assignment and prospective exacerbation risk by category. METHODS Patients were recruited from 21 centres in the USA, as part of the COPDGene study. Eligible patients were aged 45-80 years, had smoked for 10 pack-years or more, and had an FEV1/forced vital capacity (FVC) <0·7. Categories were defined with the modified Medical Research Council (mMRC) dyspnoea scale (score 0-1 vs ≥2) and the St Georges Respiratory Questionnaire (SGRQ; ≥25 vs <25 as a surrogate for the COPD Assessment Test [CAT] ≥10 vs <10) in addition to COPD exacerbations in the previous year (<2 vs ≥ 2), and lung function (FEV1% predicted ≥50 vs <50). Statistical comparisons were done with k-sample permutation tests. This study cohort is registered with ClinicalTrials.gov, number NCT00608764. FINDINGS 4484 patients with COPD were included in this analysis. Category assignment using the mMRC scale versus SGRQ were similar but not identical. On the basis of the mMRC scale, 1507 (33·6%) patients were assigned to category A, 919 (20·5%) to category B, 355 (7·9%) to category C, and 1703 (38·0%) to category D; on the basis of the SGRQ, 1317 (29·4%) patients were assigned to category A, 1109 (24·7%) to category B, 221 (4·9%) to category C, and 1837 (41·0%) to category D (κ coefficient for agreement, 0·77). Significant heterogeneity in prospective exacerbation rates (exacerbations/person-years) were seen, especially in the D subcategories, depending on the risk factor that determined category assignment (lung function only [0·89, 95% CI 0·78-1·00]), previous exacerbation history only [1·34, 1·0-1·6], or both [1·86, 1·6-2·1; p<0·0001]). INTERPRETATION The GOLD classification emphasises the importance of symptoms and exacerbation risk when assessing COPD severity. The choice of symptom measure influences category assignment. The relative number of patients with low symptoms and high risk for exacerbations (category C) is low. Differences in exacerbation rates for patients in the highest risk category D were seen depending on whether risk was based on lung function, exacerbation history, or both. FUNDING National Heart, Lung, and Blood Institute, and the COPD Foundation through contributions from AstraZeneca, Boehringer Ingelheim, Novartis, and Sepracor.Background The 2011 Global Strategy for the Diagnosis, Management, and Prevention of COPD (GOLD) consensus report uses symptoms, exacerbation history and FEV1% to define four categories: A, low symptoms/low risk; B, high symptoms/low risk; C, low symptoms/high risk; and D, high symptoms/high risk where risk refers to exacerbations, hospitalization and death. Our objective was to determine (1) the influence of symptom instrument on category membership and (2) prospective exacerbation risk by category.


PLOS ONE | 2012

A Pharmacologic Approach to Acquired Cystic Fibrosis Transmembrane Conductance Regulator Dysfunction in Smoking Related Lung Disease

Peter A. Sloane; Suresh Shastry; Andrew M. Wilhelm; Clifford Courville; Li Ping Tang; Kyle Backer; Elina Levin; S. Vamsee Raju; Yao Li; Marina Mazur; Suzanne Byan-Parker; William E. Grizzle; Eric J. Sorscher; Mark T. Dransfield; Steven M. Rowe

Background Mucus stasis in chronic obstructive pulmonary disease (COPD) is a significant contributor to morbidity and mortality. Potentiators of cystic fibrosis transmembrane conductance regulator (CFTR) activity pharmacologically enhance CFTR function; ivacaftor is one such agent approved to treat CF patients with the G551D-CFTR gating mutation. CFTR potentiators may also be useful for other diseases of mucus stasis, including COPD. Methods and Findings In primary human bronchial epithelial cells, exposure to cigarette smoke extract diminished CFTR-mediated anion transport (65.8±0.2% of control, P<0.005) and mucociliary transport (0.17±0.05 µm/sec vs. 2.4±0.47 µm/sec control, P<0.05) by reducing airway surface liquid depth (7.3±0.6 µm vs. 13.0±0.6 µm control, P<0.005) and augmenting mucus expression (by 64%, P<0.05) without altering transepithelial resistance. Smokers with or without COPD had reduced CFTR activity measured by nasal potential difference compared to age-matched non-smokers (−6.3±1.4 and −8.0±2.0 mV, respectively vs. −15.2±2.7 mV control, each P<0.005, n = 12–14/group); this CFTR decrement was associated with symptoms of chronic bronchitis as measured by the Breathlessness Cough and Sputum Score (r = 0.30, P<0.05) despite controlling for smoking (r = 0.31, P<0.05). Ivacaftor activated CFTR-dependent chloride transport in non-CF epithelia and ameliorated the functional CFTR defect induced by smoke to 185±36% of non-CF control (P<0.05), thereby increasing airway surface liquid (from 7.3±0.6 µm to 10.1±0.4 µm, P<0.005) and mucociliary transport (from 0.27±0.11 µm/s to 2.7±0.28 µm/s, P<0.005). Conclusions Cigarette smoking reduces CFTR activity and is causally related to reduced mucus transport in smokers due to inhibition of CFTR dependent fluid transport. These effects are reversible by the CFTR potentiator ivacaftor, representing a potential therapeutic strategy to augment mucociliary clearance in patients with smoking related lung disease.


COPD: Journal of Chronic Obstructive Pulmonary Disease | 2012

A combined pulmonary -radiology workshop for visual evaluation of COPD: study design, chest CT findings and concordance with quantitative evaluation

R. Graham Barr; Eugene Berkowitz; Francesca Bigazzi; Frederick Bode; Jessica Bon; Russell P. Bowler; Caroline Chiles; James D. Crapo; Gerard J. Criner; Jeffrey L. Curtis; Asger Dirksen; Mark T. Dransfield; Goutham Edula; Leif Erikkson; Adam L. Friedlander; Warren B. Gefter; David S. Gierada; P. Grenier; Jonathan G. Goldin; MeiLan K. Han; Nadia N. Hansel; Francine L. Jacobson; Hans-Ulrich Kauczor; Vuokko L. Kinnula; David A. Lipson; David A. Lynch; William MacNee; Barry J. Make; A. James Mamary; Howard Mann

Abstract The purposes of this study were: to describe chest CT findings in normal non-smoking controls and cigarette smokers with and without COPD; to compare the prevalence of CT abnormalities with severity of COPD; and to evaluate concordance between visual and quantitative chest CT (QCT) scoring. Methods: Volumetric inspiratory and expiratory CT scans of 294 subjects, including normal non-smokers, smokers without COPD, and smokers with GOLD Stage I-IV COPD, were scored at a multi-reader workshop using a standardized worksheet. There were 58 observers (33 pulmonologists, 25 radiologists); each scan was scored by 9–11 observers. Interobserver agreement was calculated using kappa statistic. Median score of visual observations was compared with QCT measurements. Results: Interobserver agreement was moderate for the presence or absence of emphysema and for the presence of panlobular emphysema; fair for the presence of centrilobular, paraseptal, and bullous emphysema subtypes and for the presence of bronchial wall thickening; and poor for gas trapping, centrilobular nodularity, mosaic attenuation, and bronchial dilation. Agreement was similar for radiologists and pulmonologists. The prevalence on CT readings of most abnormalities (e.g. emphysema, bronchial wall thickening, mosaic attenuation, expiratory gas trapping) increased significantly with greater COPD severity, while the prevalence of centrilobular nodularity decreased. Concordances between visual scoring and quantitative scoring of emphysema, gas trapping and airway wall thickening were 75%, 87% and 65%, respectively. Conclusions: Despite substantial inter-observer variation, visual assessment of chest CT scans in cigarette smokers provides information regarding lung disease severity; visual scoring may be complementary to quantitative evaluation.


American Journal of Respiratory and Critical Care Medicine | 2009

Biologic lung volume reduction in advanced upper lobe emphysema: phase 2 results.

Gerard J. Criner; Victor Pinto-Plata; Charlie Strange; Mark T. Dransfield; Mark Gotfried; William Leeds; Geoffrey McLennan; Yael Refaely; Sanjiv Tewari; Mark J. Krasna; Bartolome R. Celli

RATIONALE Biologic lung volume reduction (BioLVR) is a new endobronchial treatment for advanced emphysema that reduces lung volume through tissue remodeling. OBJECTIVES Assess the safety and therapeutic dose of BioLVR hydrogel in upper lobe predominant emphysema. METHODS Open-labeled, multicenter phase 2 dose-ranging studies were performed with BioLVR hydrogel administered to eight subsegmental sites (four in each upper lobe) involving: (1) low-dose treatment (n = 28) with 10 ml per site (LD); and (2) high-dose treatment (n = 22) with 20 ml per site (HD). Safety was assessed by the incidence of serious medical complications. Efficacy was assessed by change from baseline in pulmonary function tests, dyspnea score, 6-minute walk distance, and health-related quality of life. MEASUREMENTS AND MAIN RESULTS After treatment there were no deaths and four serious treatment-related complications. A reduction in residual volume to TLC ratio at 12 weeks (primary efficacy outcome) was achieved with both LD (-6.4 +/- 9.3%; P = 0.002) and HD (-5.5 +/- 9.4%; P = 0.028) treatments. Improvements in pulmonary function in HD (6 mo: DeltaFEV(1) = +15.6%; P = 0.002; DeltaFVC = +9.1%; P = 0.034) were greater than in LD patients (6 mo: DeltaFEV(1) = +6.7%; P = 0.021; DeltaFVC = +5.1%; P = 0.139). LD- and HD-treated groups both demonstrated improved symptom scores and health-related quality of life. CONCLUSIONS BioLVR improves physiology and functional outcomes up to 6 months with an acceptable safety profile in upper lobe predominant emphysema. Overall improvement was greater and responses more durable with 20 ml per site than 10 ml per site dosing. Clinical trial registered with www.clinicaltrials.gov (NCT 00435253 and NCT 00515164).

Collaboration


Dive into the Mark T. Dransfield's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Surya P. Bhatt

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

George R. Washko

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William C. Bailey

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwin K. Silverman

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge