Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Primo Schär is active.

Publication


Featured researches published by Primo Schär.


The EMBO Journal | 1996

Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein.

Y Kubota; R A Nash; Arne Klungland; Primo Schär; Deborah E. Barnes; Tomas Lindahl

Repair of a uracil‐guanine base pair in DNA has been reconstituted with the recombinant human proteins uracil‐DNA glycosylase, apurinic/apyrimidinic endonuclease, DNA polymerase beta and DNA ligase III. The XRCC1 protein, which is known to bind DNA ligase III, is not absolutely required for the reaction but suppresses strand displacement by DNA polymerase beta, allowing for more efficient ligation after filling of a single nucleotide patch. We show that XRCC1 interacts directly with DNA polymerase beta using far Western blotting, affinity precipitation and yeast two‐hybrid analyses. In addition, a complex formed between DNA polymerase beta and a double‐stranded oligonucleotide containing an incised abasic site was supershifted by XRCC1 in a gel retardation assay. The region of interaction with DNA polymerase beta is located within residues 84–183 in the N‐terminal half of the XRCC1 protein, whereas the C‐terminal region of XRCC1 is involved in binding DNA ligase III. These data indicate that XRCC1, which has no known catalytic activity, might serve as a scaffold protein during base excision‐repair. DNA strand displacement and excessive gap filling during DNA repair were observed in cell‐free extracts of an XRCC1‐deficient mutant cell line, in agreement with the results from the reconstituted system.


The EMBO Journal | 2002

Modification of the human thymine‐DNA glycosylase by ubiquitin‐like proteins facilitates enzymatic turnover

Ulrike Hardeland; Roland Steinacher; Josef Jiricny; Primo Schär

DNA glycosylases initiate base excision repair (BER) through the generation of potentially harmful abasic sites (AP sites) in DNA. Human thymine‐DNA glycosylase (TDG) is a mismatch‐specific uracil/thymine‐DNA glycosylase with an implicated function in the restoration of G·C base pairs at sites of cytosine or 5‐methylcytosine deamination. The rate‐limiting step in the action of TDG in vitro is its dissociation from the product AP site, suggesting the existence of a specific enzyme release mechanism in vivo. We show here that TDG interacts with and is covalently modified by the ubiquitin‐like proteins SUMO‐1 and SUMO‐2/3. SUMO conjugation dramatically reduces the DNA substrate and AP site binding affinity of TDG, and this is associated with a significant increase in enzymatic turnover in reactions with a G·U substrate and the loss of G·T processing activity. Sumoylation also potentiates the stimulatory effect of APE1 on TDG. These observations implicate a function of sumoylation in the controlled dissociation of TDG from the AP site and open up novel perspectives for the understanding of the molecular mechanisms coordinating the early steps of BER.


Nature | 2011

Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability

Daniel Cortázar; Christophe Kunz; Jim Selfridge; Teresa Lettieri; Yusuke Saito; Eilidh MacDougall; Annika Wirz; David Schuermann; Angelika L. Jacobs; Fredy Siegrist; Roland Steinacher; Josef Jiricny; Adrian Bird; Primo Schär

Thymine DNA glycosylase (TDG) is a member of the uracil DNA glycosylase (UDG) superfamily of DNA repair enzymes. Owing to its ability to excise thymine when mispaired with guanine, it was proposed to act against the mutability of 5-methylcytosine (5-mC) deamination in mammalian DNA. However, TDG was also found to interact with transcription factors, histone acetyltransferases and de novo DNA methyltransferases, and it has been associated with DNA demethylation in gene promoters following activation of transcription, altogether implicating an engagement in gene regulation rather than DNA repair. Here we use a mouse genetic approach to determine the biological function of this multifaceted DNA repair enzyme. We find that, unlike other DNA glycosylases, TDG is essential for embryonic development, and that this phenotype is associated with epigenetic aberrations affecting the expression of developmental genes. Fibroblasts derived from Tdg null embryos (mouse embryonic fibroblasts, MEFs) show impaired gene regulation, coincident with imbalanced histone modification and CpG methylation at promoters of affected genes. TDG associates with the promoters of such genes both in fibroblasts and in embryonic stem cells (ESCs), but epigenetic aberrations only appear upon cell lineage commitment. We show that TDG contributes to the maintenance of active and bivalent chromatin throughout cell differentiation, facilitating a proper assembly of chromatin-modifying complexes and initiating base excision repair to counter aberrant de novo methylation. We thus conclude that TDG-dependent DNA repair has evolved to provide epigenetic stability in lineage committed cells.


Molecular and Cellular Biology | 1995

Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination.

Y F Wei; P Robins; K Carter; K Caldecott; Darryl Pappin; G L Yu; R P Wang; B K Shell; R A Nash; Primo Schär

Three distinct DNA ligases, I to III, have been found previously in mammalian cells, but a cloned cDNA has been identified only for DNA ligase I, an essential enzyme active in DNA replication. A short peptide sequence conserved close to the C terminus of all known eukaryotic DNA ligases was used to search for additional homologous sequences in human cDNA libraries. Two different incomplete cDNA clones that showed partial homology to the conserved peptide were identified. Full-length cDNAs were obtained and expressed by in vitro transcription and translation. The 103-kDa product of one cDNA clone formed a characteristic complex with the XRCC1 DNA repair protein and was identical with the previously described DNA ligase III. DNA ligase III appears closely related to the smaller DNA ligase II. The 96-kDa in vitro translation product of the second cDNA clone was also shown to be an ATP-dependent DNA ligase. A fourth DNA ligase (DNA ligase IV) has been purified from human cells and shown to be identical to the 96-kDa DNA ligase by unique agreement between mass spectrometry data on tryptic peptides from the purified enzyme and the predicted open reading frame of the cloned cDNA. The amino acid sequences of DNA ligases III and IV share a related active-site motif and several short regions of homology with DNA ligase I, other DNA ligases, and RNA capping enzymes. DNA ligases III and IV are encoded by distinct genes located on human chromosomes 17q11.2-12 and 13q33-34, respectively.


Journal of Biological Chemistry | 1999

Identification of hMutLbeta, a heterodimer of hMLH1 and hPMS1.

Markus Räschle; Giancarlo Marra; Minna Nyström-Lahti; Primo Schär; Josef Jiricny

hMLH1 and hPMS2 function in postreplicative mismatch repair in the form of a heterodimer referred to as hMutLα. Tumors or cell lines lacking this factor display mutator phenotypes and microsatellite instability, and mutations in the hMLH1 andhPMS2 genes predispose to hereditary non-polyposis colon cancer. A third MutL homologue, hPMS1, has also been reported to be mutated in one cancer-prone kindred, but the protein encoded by this locus has so far remained without function. We now show that hPMS1 is expressed in human cells and that it interacts with hMLH1 with high affinity to form the heterodimer hMutLβ. Recombinant hMutLα and hMutLβ, expressed in the baculovirus system, were tested for their activity in an in vitro mismatch repair assay. While hMutLα could fully complement extracts of mismatch repair-deficient cell lines lacking hMLH1 or hPMS2, hMutLβ failed to do so with any of the different substrates tested in this assay. The involvement of the latter factor in postreplicative mismatch repair thus remains to be demonstrated.


The EMBO Journal | 1998

Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4.

Gernot Herrmann; Tomas Lindahl; Primo Schär

Saccharomyces cerevisiae DNA ligase IV (LIG4) has been shown previously to be involved in non‐homologous DNA end joining and meiosis. The homologous mammalian DNA ligase IV interacts with XRCC4, a protein implicated in V(D)J recombination and double‐strand break repair. Here, we report the discovery of LIF1, a S.cerevisiae protein that strongly interacts with the C‐terminal BRCT domain of yeast LIG4. LIG4 and LIF1 apparently occur as a heterodimer in vivo. LIF1 shares limited sequence homology with mammalian XRCC4. Disruption of the LIF1 gene abolishes the capacity of cells to recircularize transformed linearized plasmids correctly by non‐homologous DNA end joining. Loss of LIF1 is also associated with conditional hypersensitivity of cells to ionizing irradiation and with reduced sporulation efficiency. Thus, with respect to their phenotype, lif1 strains are similar to the previously described lig4 mutants. One function of LIF1 is the stabilization of the LIG4 enzyme. The finding of a XRCC4 homologue in S.cerevisiae now allows for mutational analyses of structure–function relationships in XRCC4‐like proteins to define their role in DNA double‐strand break repair.


Chromosoma | 2012

DNA glycosylases: in DNA repair and beyond

Angelika L. Jacobs; Primo Schär

The base excision repair machinery protects DNA in cells from the damaging effects of oxidation, alkylation, and deamination; it is specialized to fix single-base damage in the form of small chemical modifications. Base modifications can be mutagenic and/or cytotoxic, depending on how they interfere with the template function of the DNA during replication and transcription. DNA glycosylases play a key role in the elimination of such DNA lesions; they recognize and excise damaged bases, thereby initiating a repair process that restores the regular DNA structure with high accuracy. All glycosylases share a common mode of action for damage recognition; they flip bases out of the DNA helix into a selective active site pocket, the architecture of which permits a sensitive detection of even minor base irregularities. Within the past few years, it has become clear that nature has exploited this ability to read the chemical structure of DNA bases for purposes other than canonical DNA repair. DNA glycosylases have been brought into context with molecular processes relating to innate and adaptive immunity as well as to the control of DNA methylation and epigenetic stability. Here, we summarize the key structural and mechanistic features of DNA glycosylases with a special focus on the mammalian enzymes, and then review the evidence for the newly emerging biological functions beyond the protection of genome integrity.


Current Biology | 2005

Functionality of Human Thymine DNA Glycosylase Requires SUMO-Regulated Changes in Protein Conformation

Roland Steinacher; Primo Schär

BACKGROUND Base excision repair initiated by human thymine-DNA glycosylase (TDG) results in the generation of abasic sites (AP sites) in DNA. TDG remains bound to this unstable repair intermediate, indicating that its transmission to the downstream-acting AP endonuclease is a coordinated process. Previously, we established that posttranslational modification of TDG with Small Ubiquitin-like MOdifiers (SUMOs) facilitates the dissociation of the DNA glycosylase from the product AP site, but the underlying molecular mechanism remained unclear. RESULTS We now show that upon DNA interaction, TDG undergoes a dramatic conformational change, which involves its flexible N-terminal domain and accounts for the nonspecific DNA binding ability of the enzyme. This function is required for efficient processing of the G.T mismatch but then cooperates with the specific DNA contacts established in the active site pocket of TDG to prevent its dissociation from the product AP site after base release. SUMO1 conjugation to the C-terminal K330 of TDG modulates the DNA binding function of the N terminus to induce dissociation of the glycosylase from the AP site while it leaves the catalytic properties of base release in the active site pocket of the enzyme unaffected. CONCLUSION Our data provide insight into the molecular mechanism of SUMO modification mediated modulation of enzymatic properties of TDG. A conformational change, involving the N-terminal domain of TDG, provides unspecific DNA interactions that facilitate processing of a wider spectrum of substrates at the expense of enzymatic turnover. SUMOylation then reverses this structural change in the product bound TDG.


Nature Chemical Biology | 2014

Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA

Toni Pfaffeneder; Fabio Spada; Mirko Wagner; Caterina Brandmayr; Silvia K. Laube; David Eisen; Matthias Truss; Jessica Steinbacher; Benjamin Hackner; Olga Kotljarova; David Schuermann; Stylianos Michalakis; Olesea Kosmatchev; Stefan Schiesser; Barbara Steigenberger; Nada Raddaoui; Gengo Kashiwazaki; Udo Müller; Cornelia G. Spruijt; Michiel Vermeulen; Heinrich Leonhardt; Primo Schär; Markus Müller; Thomas Carell

Ten eleven translocation (Tet) enzymes oxidize the epigenetically important DNA base 5-methylcytosine (mC) stepwise to 5-hydroxymethylcytosine (hmC), 5-formylcytosine and 5-carboxycytosine. It is currently unknown whether Tet-induced oxidation is limited to cytosine-derived nucleobases or whether other nucleobases are oxidized as well. We synthesized isotopologs of all major oxidized pyrimidine and purine bases and performed quantitative MS to show that Tet-induced oxidation is not limited to mC but that thymine is also a substrate that gives 5-hydroxymethyluracil (hmU) in mouse embryonic stem cells (mESCs). Using MS-based isotope tracing, we show that deamination of hmC does not contribute to the steady-state levels of hmU in mESCs. Protein pull-down experiments in combination with peptide tracing identifies hmU as a base that influences binding of chromatin remodeling proteins and transcription factors, suggesting that hmU has a specific function in stem cells besides triggering DNA repair.


Journal of Biological Chemistry | 2000

Separating substrate recognition from base hydrolysis in human thymine DNA glycosylase by mutational analysis

Ulrike Hardeland; Marc Bentele; Josef Jiricny; Primo Schär

Human thymine DNA glycosylase (TDG) was discovered as an enzyme that can initiate base excision repair at sites of 5-methylcytosine- or cytosine deamination in DNA by its ability to release thymine or uracil from G·T and G·U mismatches. Crystal structure analysis of an Escherichia coli homologue identified conserved amino acid residues that are critical for its substrate recognition/interaction and base hydrolysis functions. Guided by this revelation, we performed a mutational study of structure function relationships with the human TDG. Substitution of the postulated catalytic site asparagine with alanine (N140A) resulted in an enzyme that bound mismatched substrates but was unable to catalyze base removal. Mutation of Met-269 in a motif with a postulated role in protein-substrate interaction selectively inactivated stable binding of the enzyme to mismatched substrates but not so its glycosylase activity. These results establish that the structure function model postulated for the E. coli enzyme is largely applicable to the human TDG. We further provide evidence for G·U being the preferred substrate of TDG, not only at the mismatch recognition step of the reaction but also in base hydrolysis, and for the importance of stable complementary strand interactions by TDG to compensate for its comparably poor hydrolytic potential.

Collaboration


Dive into the Primo Schär's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge