Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Priscilla K. Cooper is active.

Publication


Featured researches published by Priscilla K. Cooper.


PLOS ONE | 2009

A Versatile Viral System for Expression and Depletion of Proteins in Mammalian Cells

Eric Campeau; Victoria Ruhl; Francis Rodier; Corey Smith; Brittany L. Rahmberg; Jill O. Fuss; Judith Campisi; Paul Yaswen; Priscilla K. Cooper; Paul D. Kaufman

The ability to express or deplete proteins in living cells is crucial for the study of biological processes. Viral vectors are often useful to deliver DNA constructs to cells that are difficult to transfect by other methods. Lentiviruses have the additional advantage of being able to integrate into the genomes of non-dividing mammalian cells. However, existing viral expression systems generally require different vector backbones for expression of cDNA, small hairpin RNA (shRNA) or microRNA (miRNA) and provide limited drug selection markers. Furthermore, viral backbones are often recombinogenic in bacteria, complicating the generation and maintenance of desired clones. Here, we describe a collection of 59 vectors that comprise an integrated system for constitutive or inducible expression of cDNAs, shRNAs or miRNAs, and use a wide variety of drug selection markers. These vectors are based on the Gateway technology (Invitrogen) whereby the cDNA, shRNA or miRNA of interest is cloned into an Entry vector and then recombined into a Destination vector that carries the chosen viral backbone and drug selection marker. This recombination reaction generates the desired product with >95% efficiency and greatly reduces the frequency of unwanted recombination in bacteria. We generated Destination vectors for the production of both retroviruses and lentiviruses. Further, we characterized each vector for its viral titer production as well as its efficiency in expressing or depleting proteins of interest. We also generated multiple types of vectors for the production of fusion proteins and confirmed expression of each. We demonstrated the utility of these vectors in a variety of functional studies. First, we show that the FKBP12 Destabilization Domain system can be used to either express or deplete the protein of interest in mitotically-arrested cells. Also, we generate primary fibroblasts that can be induced to senesce in the presence or absence of DNA damage. Finally, we determined that both isoforms of the AT-Rich Interacting Domain 4B (ARID4B) protein could induce G1 arrest when overexpressed. As new technologies emerge, the vectors in this collection can be easily modified and adapted without the need for extensive recloning.


Cell | 2008

XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations.

Li Fan; Jill O. Fuss; Quen J. Cheng; Andrew S. Arvai; Michal Hammel; Victoria A. Roberts; Priscilla K. Cooper; John A. Tainer

Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.


Cell | 2000

RETRACTED: Transcription-Coupled Repair of 8-oxoGuanine

Florence Le Page; Ely Kwoh; Anna V. Avrutskaya; Alain Gentil; Steven A. Leadon; Alain Sarasin; Priscilla K. Cooper

Analysis of transcription-coupled repair (TCR) of oxidative lesions here reveals strand-specific removal of 8-oxo-guanine (8-oxoG) and thymine glycol both in normal human cells and xeroderma pigmentosum (XP) cells defective in nucleotide excision repair. In contrast, Cockayne syndrome (CS) cells including CS-B, XP-B/CS, XP-D/CS, and XP-G/CS not only lack TCR but cannot remove 8-oxoG in a transcribed sequence, despite its proficient repair when not transcribed. The XP-G/CS defect uniquely slows lesion removal in nontranscribed sequences. Defective TCR leads to a mutation frequency at 8-oxoG of 30%-40% compared to the normal 1%-4%. Surprisingly, unrepaired 8-oxoG blocks transcription by RNA polymerase II. These data imply that TCR is required for polymerase release to allow repair and that CS results from defects in TCR of oxidative lesions.


International Journal of Radiation Biology | 1996

Non-random distribution of DNA double-strand breaks induced by particle irradiation

Markus Löbrich; Priscilla K. Cooper; Björn Rydberg

Induction of DNA double-strand breaks (dsbs) in mammalian cells is dependent on the spatial distribution of energy deposition from the ionizing radiation. For high LET particle radiations the primary ionization sites occur in a correlated manner along the track of the particles, while for X-rays these sites are much more randomly distributed throughout the volume of the cell. It can therefore be expected that the distribution of dsbs linearly along the DNA molecule also varies with the type of radiation and the ionization density. Using pulsed-field gel and conventional gel techniques, we measured the size distribution of DNA molecules from irradiated human fibroblasts in the total range of 0.1 kbp-10 Mbp for X-rays and high LET particles (N ions, 97 keV/microns and Fe ions, 150 keV/microns). On a mega base pair scale we applied conventional pulsed-field gel electrophoresis techniques such as measurement of the fraction of DNA released from the well (FAR) and measurement of breakage within a specific NotI restriction fragment (hybridization assay). The induction rate for widely spaced breaks was found to decrease with LET. However, when the entire distribution of radiation-induced fragments was analysed, we detected an excess of fragments with sizes below about 200 kbp for the particles compared with X-irradiation. X-rays are thus more effective than high LET radiations in producing large DNA fragments but less effective in the production of smaller fragments. We determined the total induction rate of dsbs for the three radiations based on a quantitative analysis of all the measured radiation-induced fragments and found that the high LET particles were more efficient than X-rays at inducing dsbs, indicating an increasing total efficiency with LET. Conventional assays that are based only on the measurement of large fragments are therefore misleading when determining total dsb induction rates of high LET particles. The possible biological significance of this non-randomness for dsb induction is discussed.


Nature Structural & Molecular Biology | 2006

WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing.

J. Jefferson P. Perry; Steven M. Yannone; Lauren G. Holden; Chiharu Hitomi; Aroumougame Asaithamby; Seungil Han; Priscilla K. Cooper; David J. Chen; John A. Tainer

WRN is unique among the five human RecQ DNA helicases in having a functional exonuclease domain (WRN-exo) and being defective in the premature aging and cancer-related disorder Werner syndrome. Here, we characterize WRN-exo crystal structures, biochemical activity and participation in DNA end joining. Metal-ion complex structures, active site mutations and activity assays reveal a nuclease mechanism mediated by two metal ions. The DNA end–binding Ku70/80 complex specifically stimulates WRN-exo activity, and structure-based mutational inactivation of WRN-exo alters DNA end joining in human cells. We furthermore establish structural and biochemical similarities of WRN-exo to DnaQ-family replicative proofreading exonucleases, describing WRN-specific adaptations consistent with double-stranded DNA specificity and functionally important conformational changes. These results indicate WRN-exo is a human DnaQ family member and support DnaQ-like proofreading activities stimulated by Ku70/80, with implications for WRN functions in age-related pathologies and maintenance of genomic integrity.


Radiation Research | 1994

DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. I. Pulsed-field gel electrophoresis method

Björn Rydberg; Markus Löbrich; Priscilla K. Cooper

The relative effectiveness of high-energy neon and iron ions for the production of DNA double-strand breaks was measured in one transformed and one nontransformed human fibroblast cell line using pulsed-field gel electrophoresis. The DNA released from the gel plug (fraction of activity released: FAR) as well as the size distribution of the DNA entering the gel were used to compare the effects of the heavy-ion exposure with X-ray exposure. Both methods gave similar results, indicating similar distributions of breaks over megabase-pair distances for the heavy ions and the X rays. The relative biological effectiveness (RBE) compared to 225 kVp X rays of initially induced DNA double-strand breaks was found to be 0.85 for 425 MeV/u neon ions (LET 32 keV/microns) and 0.42-0.55 for 250-600 MeV/u iron ions (LET 190-350 keV/microns). Postirradiation incubation showed less efficient repair of breaks induced by the neon ions and the 600 MeV/u iron ions compared to X rays. Survival experiments demonstrated RBE values larger than one for cell killing by the heavy ions in parallel experiments (neon: RBE = 1.2, iron: RBE = 2.3-3.0, based on D10 values). It is concluded that either the initial yield of DNA double-strand breaks induced by the high-energy particles is lower than the yield for X rays, or the breaks induced by heavy ions are present in clusters that cannot be resolved with the technique used. These results are confirmed in the accompanying paper (M. Löbrich, B. Rydberg and P. Cooper, Radiat. Res. 139, 142-151, 1994).


Radiation Research | 1998

Joining of Correct and Incorrect DNA Ends at Double-Strand Breaks Produced by High-Linear Energy Transfer Radiation in Human Fibroblasts

Markus Löbrich; Priscilla K. Cooper; Björn Rydberg

DNA double-strand breaks (DSBs) were measured within a 3.2-Mbp NotI fragment on chromosome 21 of cells of a normal human fibroblast cell line. Correct rejoining of DSBs was followed by measuring reconstitution of the original-size NotI fragment, and this was compared to total rejoining as measured by a conventional pulsed-field gel electrophoresis technique (FAR assay). After 80 Gy of particle irradiations with LETs in the range of 7-150 keV/microm, it was found that the repair kinetics was generally slower after irradiation with high-LET particles compared to X irradiation and that a larger proportion of the breaks remained unrepaired after 24 h. On the other hand, the misrejoining frequency as measured by the difference between correct and total rejoining after 24 h did not change with LET, but was approximately the same for all radiations at this dose, equal to 25-30% of the initial breaks. This result is discussed in relation to formation of chromosomal aberrations, deletion mutations and other biological end points.


Molecular and Cellular Biology | 2004

The Single-Strand DNA Binding Activity of Human PC4 Prevents Mutagenesis and Killing by Oxidative DNA Damage

Jen-Yeu Wang; Altaf H. Sarker; Priscilla K. Cooper; Michael R. Volkert

ABSTRACT Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Saccharomyces cerevisiae mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide-induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub1Δ mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show that XPG recruits PC4 to a bubble-containing DNA substrate with a resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.


Radiation Research | 1994

DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. II. Probing individual NotI fragments by hybridization

Markus Löbrich; Björn Rydberg; Priscilla K. Cooper

The initial yields of DNA double-strand breaks induced by energetic heavy ions (425 MeV/u neon and 250, 400 and 600 MeV/u iron) in comparison to X rays were measured in normal human diploid fibroblast cells within three small areas of the genome, defined by NotI fragments of 3.2, 2.0 and 1.2 Mbp. The methodology involves NotI restriction endonuclease digestion of DNA from irradiated cells, followed by pulsed-field gel electrophoresis, Southern blotting and hybridization with probes recognizing single-copy sequences within the three NotI fragments. The gradual disappearance of the full-size NotI fragment with dose and the appearance of a smear of broken DNA molecules are quantified. Assuming Poisson statistics for the number of double-strand breaks induced per NotI fragment of known size, absolute yields of DNA double-strand breaks were calculated and determined to be linear with dose in all cases, with the neon ion (LET 32 keV/microns) producing 4.4 x 10(-3) breaks/Mbp/Gy and all three iron-ion beams (LETs from 190 to 350 keV/microns) producing 2.8 x 10(-3) breaks/Mbp/Gy, giving RBE values for production of double-strand breaks of 0.76 for neon and 0.48 for iron in comparison to our previously determined X-ray induction rate of 5.8 x 10(-3) breaks/Mbp/Gy. These RBE values are in good agreement with results of measurements over the whole genome as reported in the accompanying paper (B. Rydberg, M. Löbrich and P. Cooper, Radiat. Res. 139, 133-141, 1994). The distribution of broken DNA molecules was similar for the various radiations, supporting a random distribution of double-strand breaks induced by the heavy ions over Mbp distances; however, correlated breaks (clusters) over much smaller distances are not ruled out. Reconstitution of the 3.2 Mbp NotI fragment was studied during postirradiation incubation of the cells as a measure of rejoining of correct DNA ends. The proportion of breaks repaired decreased with increasing LET.


Radiation Research | 2005

Dose-Dependent Misrejoining of Radiation-Induced DNA Double-Strand Breaks in Human Fibroblasts: Experimental and Theoretical Study for High- and Low-LET Radiation

Björn Rydberg; Brian Cooper; Priscilla K. Cooper; William R. Holley; Aloke Chatterjee

Abstract Rydberg, B., Cooper, B., Cooper, P. K., Holley, W. R. and Chatterjee, A. Dose-Dependent Misrejoining of Radiation-Induced DNA Double-Strand Breaks in Human Fibroblasts: Experimental and Theoretical Study for High- and Low-LET Radiation. Radiat. Res. 163, 526–534 (2005). Misrejoining of DNA double-strand breaks (DSBs) was measured in human primary fibroblasts after exposure to X rays and high-LET particles (helium, nitrogen and iron) in the dose range 10–80 Gy. To measure joining of wrong DNA ends, the integrity of a 3.2-Mbp restriction fragment was analyzed directly after exposure and after 16 h of repair incubation. It was found that the misrejoining frequency for X rays was nonlinearly related to dose, with less probability of misrejoining at low doses than at high doses. The dose dependence for the high-LET particles, on the other hand, was closer to being linear, with misrejoining frequencies higher than for X rays, particularly at the lower doses. These experimental results were simulated with a Monte Carlo approach that includes a cell nucleus model with all 46 chromosomes present, combined with realistic track structure simulations to calculate the geometrical positions of all DSBs induced for each dose. The model assumes that the main determinant for misrejoining probability is the distance between two simultaneously present DSBs. With a Gaussian interaction probability function with distance, it was found that the data for both low- and high-LET radiation could be fitted with an interaction distance (sigma of the Gaussian curve) of 0.25 μm. This is half the distance previously found to best fit chromosomal aberration data in human lymphocytes using the same methods (Holley et al., Radiat. Res. 158, 568–580, 2002). The discrepancy may indicate inadequacies in the chromosome model, for example insufficient chromosomal overlap, but may also be partly due to differences between fibroblasts and lymphocytes.

Collaboration


Dive into the Priscilla K. Cooper's collaboration.

Top Co-Authors

Avatar

Björn Rydberg

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John A. Tainer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Markus Löbrich

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Steven A. Leadon

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Susan E. Tsutakawa

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Altaf H. Sarker

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew S. Arvai

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Brian Cooper

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David J. Chen

University of Houston System

View shared research outputs
Researchain Logo
Decentralizing Knowledge