Prodyut Dhar
Indian Institute of Technology Guwahati
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Prodyut Dhar.
RSC Advances | 2015
Prodyut Dhar; Debashis Tarafder; Amit Kumar; Vimal Katiyar
Cellulose nanocrystals (CNCs) using different polymorphs of cellulose were fabricated from raw bamboo pulp through alkali treatment followed by acid hydrolysis. The effect of CNC polymorphs, namely CNC I, CNC II and CNC:I → II (CNC II from cellulose I), on morphology, crystal structure, degree of hydrogen bonding and thermal stability were studied. These polymorphs were dispersed in polylactic acid (PLA) films using a casting evaporation approach and their effect on the structural, thermal, mechanical and barrier properties of the PLA were investigated. The CNC polymorphs differ significantly in their reinforcement capability and ability to form percolated networks. Incorporation of CNC II and CNC:I → II significantly improved the Youngs modulus of composites (by ∼72%). However, their elongation at break significantly decreased compared to CNC I, due to high hydroxyl functionality, which forms an entangled hydrogen bonded network within the polymer matrix, leading to improvement in mechanical as well as barrier properties. The theoretically calculated moduli of composites using Halpin–Kardos, Cox–Krenchel and Ouali models showed good agreement for CNC I, CNC II and CNC:I → II, albeit at higher aspect ratio. All three CNCs showed the ability to form percolated networks, the occurrence and stability of which varied with the type of polymorph. Therefore, the current study provides an insight towards selection of appropriate polymorphs for fabrication of CNC reinforced high performance poly (lactic acid) based bionanocomposites.
ACS Applied Materials & Interfaces | 2016
Prodyut Dhar; Amit Kumar; Vimal Katiyar
This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low magnetic fields, with potential applications in the manufacturing of three-dimensional composites with microstructural features comparable to biological materials for high-performance engineering applications.
International Journal of Biological Macromolecules | 2018
Shasanka Sekhar Borkotoky; Prodyut Dhar; Vimal Katiyar
This article addresses the elegant and green approach for fabrication of bio-based poly (lactic acid) (PLA)/cellulose nanocrystal (CNCs) bionanocomposite foam (PLA/CNC) with cellular morphology and hydrophobic surface behavior. Highly porous (porosity >80%) structure is obtained with interconnected pores and the effect of CNCs in the cell density (Nf) and cell size of foams are thoroughly investigated by morphological analysis. The thermo-mechanical investigations are performed for the foam samples and almost ∼1.7 and ∼2.2 fold increase in storage modulus is observed for the compressive and tensile mode respectively. PLA/CNC based bionanocomposite foams displayed similar thermal stability as base PLA foam. Detailed investigations of decomposition behavior are studied by using hyphenated thermogravimetric analysis-fourier transmission infrared spectroscopy (TGA-FTIR) system. Almost ∼13% increment is observed in crystallinity at highest loading of CNCs compared to neat counterpart. To investigate the splitting and spreading phenomenon of the wettability of the samples, linear model is used to find the Youngs contact angle and contact angle hysteresis (CAH). Besides, ∼6.1 folds reduction in the density of PLA and the nanocomposite foams compared to PLA carries much significance in specialized application areas where weight is an important concern.
Compost Science & Utilization | 2015
Rashmi R. Devi; Prodyut Dhar; Ajay S. Kalamdhad; Vimal Katiyar
ABSTRACT Cellulose nanocrystals have emerged as replacements for man-made fibers to fabricate environmentally friendly green products. In this work, cellulose nanocrystals (CNCs) of mixed morphology were synthesized by acid hydrolysis of compost using sulfuric acid. Compost, an agro-based biomass feedstock, procured from water hyacinth (Eichhornia crassipes), cow dung, and saw dust (8:1:1) was utilized for the extraction of cellulose, followed by synthesis of CNCs. Compost was prepared using a rotary drum composter and was utilized for the production of CNCs. A two-step procedure for the extraction of CNCs was studied. Initial chemical treatments, including alkali treatment and bleaching, led to the gradual removal of lignin and hemicellulose, while the subsequent sulphuric acid (40%) hydrolysis step yields CNCs in an aqueous suspension. The synthesized CNCs have been studied by Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and particle size analyzer. The morphology and dimension of nanofibrils were studied by scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques, which showed mixed morphology of rectangular cone type and spherical dimensions. Fabrication of such mixed morphology was found to be dependent on the selected biomass. The trace of metal elements present in the biomass was investigated by scanning electron microscopy-energy dispersive X-ray (SEM-EDX). We report a cost effective and feasible approach of utilizing inexpensive bioresources for production of value added products like CNCs, which could find potential application in the fields of healthcare, biomedical engineering, packaging, etc.
Journal of Thermodynamics and Catalysis | 2014
Prodyut Dhar; Sai Phani Kumar Vangala; Pankaj Tiwari; Amit Kumar; Vimal Katiyar
Polyhydroxybutyrate (PHB)/ Cellulose nanocrystals (CNCs) nanobiocomposites are prepared by solvent exchange cum solution casting technique at various loading fractions. The effects of CNC loading on dispersion in polymer matrix are studied. Acid hydrolysis of cellulose pulp from bamboo (Bambusabalcooa) yields crystalline rod shaped CNCs having width in the range of 10-20 nm and length being 300-400 nm. Morphological and X-ray diffraction (XRD) studies revealed improved interfacial adhesion of PHB with hydroxyl groups on CNC surface at a threshold loading of 3 wt%. Thermogravimetric analysis (TGA) showed that thermal stability of the nanobiocomposites (PHB/ CNC) slightly improved at 3 wt% CNC loading compared to pristine PHB. Further, kinetic analysis of the PHB/CNC nanobiocomposites at different loadings are investigated using isoconversional methods to predict the kinetic triplet. Kinetic parameters predicted from isoconversional methods using Ozawa Flynn Wall (OFW) and Kissinger Akahira Sunose (KAS) models showed that activation energy does not significantly vary with the degree of degradation, revealing that overall degradation follows a single step mechanism. The predicted activation energy values from both OFW and KAS models are in the range of 100-130 kJ/mol The activation energy values are high at higher CNC loadings, showing enhancement in thermal degradation rate due to agglomeration of CNCs. Thermal degradation phenomenon is further studied using Coats Redfern method considering phase boundary controlled models, first order reaction model and power law model. Overall investigation and comparison of the kinetic parameters led to the conclusion that thermal degradation mechanism of PHB/CNC nanobiocomposites followed phase boundary controlled first order reaction models (contracting volume) with random chain scission mechanism
International Journal of Biological Macromolecules | 2017
Monika; Prodyut Dhar; Vimal Katiyar
Cellulose nanocrystals (CNC) are fabricated from filter paper (as cellulosic source) by acid hydrolysis using different acids such as sulphuric (H2SO4), phosphoric (H3PO4), hydrochloric (HCl) and nitric (HNO3) acid. The resulting acid derived CNC are melt mixed with Polylactic acid (PLA) using extruder at 180°C. Thermogravimetric (TGA) result shows that increase in 10% and 50% weight loss (T10, T50) temperature for PLA-CNC film fabricated with HNO3, H3PO4 and HCl derived CNC have improved thermal stability in comparison to H2SO4-CNC. Nonisothermal kinetic studies are carried out with modified-Coats-Redfern (C-R), Ozawa-Flynn-Wall (OFW) and Kissinger method to predict the kinetic and thermodynamic parameters. Subsequently prediction of these parameter leads to the proposal of thermal induced degradation mechanism of nanocomposites using Criado method. The distribution of Ea calculated from OFW model are (PLA-H3PO4-CNC: 125-139 kJmol-1), (PLA-HNO3-CNC: 126-145 kJmol-1), (PLA-H2SO4-CNC: 102-123 kJmol-1) and (PLA-HCl-CNC: 140-182 kJmol-1). This difference among Ea for the decomposition of PLA-CNC bionanocomposite is probably due to various acids used in this study. The Ea calculated by these two methods are found in consonance with that observed from Kissinger method. Further, hyphenated TG-Fourier transform infrared spectroscopy (FTIR) result shows that gaseous products such as CO2, CO, lactide, aldehydes and other compounds are given off during the thermal degradation of PLA-CNC nanocomposite.
ACS Omega | 2017
Melakuu Tesfaye; Rahul Patwa; Prodyut Dhar; Vimal Katiyar
This article reports a novel fabrication of branched cum cross-linked poly(lactic acid) (PLA) with nanosilk fibroin with graft chain topology by reactive extrusion process. It could be possible by the addition of a small amount of radical initiator (dicumyl peroxide (DCP)). Grafting of silk nanocrystals (SNCs) on PLA macromolecules that provides remarkable improvement in the rheological and thermal properties of the latter are confirmed by 1H NMR and Fourier transform infrared investigation. Significant improvement is observed in zero shear viscosities, and the crossover point shifts to lower frequencies as compared to the branched and cross-linked PLA system. Along with SNC grafting, the crystallization process is also enhanced and stable crystals appeared during cooling, which results in a single melting peak. The rate of crystallization of PLA has been improved although the percentage crystallinity reduces with DCP content, as higher grafting and cross-linking restricts the chain segmental motion, which is critical for crystallization process. Furthermore, SNC grafting increases the reprocessability performance of PLA and provides higher rheological properties as compared to the branched and cross-linked PLA at all reprocessing cycles.
Journal of Renewable and Sustainable Energy | 2014
Surendra Singh Gaur; Prodyut Dhar; Amit Kumar; Vimal Katiyar
A proton conducting polymer electrolyte nanocomposite membrane has been fabricated by using poly (vinyl alcohol) (PVA), Chitosan, and poly (styrene sulfonic acid) (PSSA) polymers and montmorillonite Cloisite®30B clay with the objective of its application in direct methanol fuel cells. Comparative studies of a PVA/PSSA/Chitosan/Cloisite30B clay composite membrane with a base PVA/PSSA membrane has been carried out by using thermal gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, X-ray diffraction, methanol permeability and proton conductivity measurements. Properties of the membrane have been compared with Nafion®117 at identical test conditions. Methanol permeability of the PVA/PSSA/Chitosan/Cloisite30B clay composite membrane has been found to be superior to that of PVA/PSSA as well as Nafion117 membranes. Water uptake of the membrane is much higher compared to the Nafion117 membrane. Proton conductivity of the membrane has been found in the range of 10−2 S cm−1 at roo...
Scientific Reports | 2018
Prodyut Dhar; Surendra Singh Gaur; Amit Kumar; Vimal Katiyar
Graphene nanoscrolls (GNS), due to their remarkably interesting properties, have attracted significant interest with applications in various engineering sectors. However, uncontrolled morphologies, poor yield and low quality GNS produced through traditional routes are major challenges associated. We demonstrate sustainable approach of utilizing bio-derived cellulose nanocrystals (CNCs) as template for fabrication of GNS with tunable morphological dimensions ranging from micron-to-nanoscale(controlled length < 1 μm or >1 μm), alongwith encapsulation of catalytically active metallic-species in scroll interlayers. The surface-modified magnetic CNCs acts as structural-directing agents which provides enough momentum to initiate self-scrolling phenomenon of graphene through van der Waals forces and π-π interactions, mechanism of which is demonstrated through experimental and molecular simulation studies. The proposed approach of GNS fabrication provides flexibility to tune physico-chemical properties of GNS by simply varying interlayer spacing, scrolling density and fraction of encapsulated metallic nanoparticles. The hybrid GNS with confined palladium or platinum nanoparticles (at lower loading ~1 wt.%) shows enhanced hydrogen storage capacity (~0.2 wt.% at~20 bar and ~273 K) and excellent supercapacitance behavior (~223–357 F/g) for prolonged cycles (retention ~93.5–96.4% at ~10000 cycles). The current strategy of utilizing bio-based templates can be further extended to incorporate complex architectures or nanomaterials in GNS core or inter-layers, which will potentially broaden its applications in fabrication of high-performance devices.
Polymer | 2016
Prodyut Dhar; Debashis Tarafder; Amit Kumar; Vimal Katiyar