Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prolay Das is active.

Publication


Featured researches published by Prolay Das.


Bioorganic Chemistry | 2013

PEG-mediated one-pot multicomponent reactions for the efficient synthesis of functionalized dihydropyridines and their functional group dependent DNA cleavage activity.

Suman Pal; Vandana Singh; Prolay Das; Lokman H. Choudhury

Polyethylene glycol (PEG) has been found to be an inexpensive, non-toxic and useful medium for the one pot synthesis of highly functionalized dihydropyridines using multicomponent reactions (MCRs) at room temperature under catalyst free conditions. The notable features of this protocol are: mild reaction condition, applicability to wide range of substrates, reusability of the PEG and good yields. The interaction of the synthesized compounds with pUC19 plasmid DNA was also analyzed. Some of the synthesized compounds showed interesting functional group dependent nuclease activity for plasmid DNA cleavage under physiological conditions.


RSC Advances | 2015

Repair efficiency of clustered abasic sites by APE1 in nucleosome core particles is sequence and position dependent

Vandana Singh; Bhavini Kumari; Prolay Das

Closely located multiple abasic sites or clustered abasic sites are highly mutagenic and potentially cytotoxic. They have been found to be repair resistant in several in vitro studies. We studied the efficiency of the repair of clustered abasic sites by the APE1 enzyme in nucleosome core particles (NCPs). Sequences having genomic importance as the core sequence of TATA box and CpG islands were used to assemble the NCPs where the abasic clusters are located around the A/T or G/C rich 0.5 positioning site of the NCPs. The thermodynamics of the binding and repair of the A/T or G/C encased clustered abasic sites in the NCPs by APE1 enzyme are reported herein for the first time that was monitored by Isothermal Titration Calorimetry (ITC). The A/T encased clustered abasic sites in the NCP showed greater binding affinity with APE1 than the G/C counterpart. A/T encased abasic sites are also cleaved faster to generate double strand breaks by APE1 enzyme as compared to the CpG island sequence in the NCP, albeit at much slower rate than the linear model. Although, the overall reactivity of the abasic sites is appreciably reduced in the NCPs, distinct differences exist in the processing of the abasic sites that are flanked by A/T or G/C rich sequence. Our study suggests that both sequence effect and nucleosomal positioning are important determinants for the repair efficiency of clustered abasic sites in NCPs.


DNA Repair | 2013

Condensation of DNA--a putative obstruction for repair process in abasic clustered DNA damage.

Vandana Singh; Prolay Das

Clustered DNA damages are defined as two or more closely located DNA damage lesions that may be present within a few helical turns of the DNA double strand. These damages are potential signatures of ionizing radiation and are often found to be repair resistant. Types of damaged lesions frequently found inside clustered DNA damage sites include oxidized bases, abasic sites, nucleotide dimers, strand breaks or their complex combinations. In this study, we used a bistranded two-lesion abasic cluster DNA damage model to access the repair process of DNA in condensate form. Oligomer DNA duplexes (47 bp) were designed to have two deoxyuridine in the middle of the sequences, three bases apart in opposite strands. The deoxyuridine residues were converted into abasic sites by treatment with UDG enzyme creating an abasic clustered damage site in a precise position in each of the single strand of the DNA duplex. This oligomer duplex having compatible cohesive ends was ligated to pUC19 plasmid, linearized with HindIII restriction endonuclease. The plasmid-oligomer conjugate was transformed into condensates by treating them with spermidine. The efficiency of strand cleavage action of ApeI enzyme on the abasic sites was determined by denaturing PAGE after timed incubation of the oligomer duplex and the oligomer-plasmid conjugate in presence and absence of spermidine. The efficiency of double strand breaks was determined similarly by native PAGE. Quantitative gel analysis revealed that rate of abasic site cleavage is reduced in the DNA condensates as compared to the oligomer DNA duplex or the linear ligated oligomer-plasmid conjugates. Generation of double strand break is significantly reduced also, suggesting that their creation is not proportionate to the number of abasic sites cleaved in the condensate model. All these suggest that the ApeI enzyme have difficulty to access the abasic sites located deep into the condensates leading to repair refractivity of the damages. In addition, we found that presence of a polyamine such as spermidine has no notable effect in the incision activity of ApeI enzyme in linear oligomer DNA duplexes in our experimental concentration.


Journal of Materials Chemistry B | 2014

Synthesis and characterization of a biocompatible monotyrosine-based polymer and its interaction with DNA

Radhika Mehta; Rina Kumari; Prolay Das; Anil K. Bhowmick

A novel tyrosine-based copolymer containing l-tyrosine (Tyr) and diglycidylether of bisphenol A(DGEBA) was synthesized and studied for its interaction with DNA for potential applications in biological systems. The synthesis of the polymer was optimized by varying monomer ratios using 4-(dimethylamino)pyridine (DMAP) as a catalyst to yield polymers with a Mw of 7500-8000. Further characterization by FTIR, NMR and thermal analysis supported the formation of the monotyrosine-DGEBA polymer. The interaction of the 1 : 1 DGEBA-tyrosine copolymer with DNA was investigated by gel electrophoresis, thermal melting, and fluorescence spectroscopy in ratios ranging from 0.5 : 1 to 12 : 1 polymer-DNA (w/w). The copolymer was seen to lend stability to the DNA without damaging it and demonstrated endonuclease resistivity that is conducive for biological applications. Scanning electron microscopy, dynamic light scattering and zeta potential studies of the polymer-DNA complex also established that the polymer is capable of encapsulating DNA leading to the formation of the DNA-polymer polyplex nano-assembly. The potential of the polymer for biological applications was further reinstated by its non-cytotoxicity.


Beilstein Journal of Organic Chemistry | 2014

Synthesis, characterization and DNA interaction studies of new triptycene derivatives

Sourav Chakraborty; Snehasish Mondal; Rina Kumari; Sourav Bhowmick; Prolay Das; Neeladri Das

Summary A facile and efficient synthesis of a new series of triptycene-based tripods is being reported. Using 2,6,14- or 2,7,14-triaminotriptycenes as synthons, the corresponding triazidotriptycenes were prepared in high yield. Additionally, we report the transformation of 2,6,14- or 2,7,14-triaminotriptycenes to the corresponding ethynyl-substituted triptycenes via their tribromo derivatives. Subsequently, derivatization of ethynyl-substituted triptycenes was studied to yield the respective propiolic acid and ethynylphosphine derivatives. Characterization of the newly functionalized triptycene derivatives and their regioisomers were carried out using FTIR and multinuclear NMR spectroscopy, mass spectrometry, and elemental analyses techniques. The study of the interaction of these trisubstituted triptycenes with various forms of DNA revealed interesting dependency on the functional groups of the triptycene core to initiate damage or conformational changes in DNA.


Integrative Biology | 2016

A quantum dot–MUC1 aptamer conjugate for targeted delivery of protoporphyrin IX and specific photokilling of cancer cells through ROS generation

Seema Singh; Pravin K. Jha; Vandana Singh; Kislay K. Sinha; Sahid Hussain; Manoj K. Singh; Prolay Das

Non-targeted photosensitizers lack selectivity that undermines the potential use of photodynamic therapy (PDT). Herein, we report the DNA mediated assembly of a ZnSe/ZnS quantum dot (QD)-photosensitizer (PS)-Mucin 1(MUC1) aptamer conjugate for targeting the MUC1 cancer biomarker and simultaneous generation of reactive oxygen species (ROS). A photosensitizer, protoporphyrin IX (PpIX), was conjugated to a single stranded DNA and self-assembled to a complementary strand that was conjugated to a QD and harboring a MUC1 aptamer sequence. A multistep fluorescence resonance energy transfer (FRET) is shown that involves the QD, PpIX and covalently linked CF™ 633 amine dye (CF dye) to the MUC1 peptide that tracks the potency of the aptamer to attach itself with the MUC1 peptide. Since the absorption spectra of the CF dye overlap with the emission spectra of PpIX, the former acts as an acceptor to PpIX forming a second FRET pair when the dye labeled MUC1 binds to the aptamer. The binding of the QD-PpIX nanoassemblies with MUC1 through the aptamer was further confirmed by gel electrophoresis and circular dichroism studies. The selective photodamage of MUC1 expressing HeLa cervical cancer cells through ROS generation in the presence of the QD-PpIX FRET probe upon irradiation is successfully demonstrated.


Mutation Research | 2014

Direct observation of preferential processing of clustered abasic DNA damages with APE1 in TATA box and CpG island by reaction kinetics and fluorescence dynamics.

Vandana Singh; Bhavini Kumari; Banibrata Maity; Debabrata Seth; Prolay Das

Sequences like the core element of TATA box and CpG island are frequently encountered in the genome and related to transcription. The fate of repair of clustered abasic sites in such sequences of genomic importance is largely unknown. This prompted us to investigate the sequence dependence of cleavage efficiency of APE1 enzyme at abasic sites within the core sequences of TATA box and CpG island using fluorescence dynamics and reaction kinetics. Simultaneous molecular dynamics study through steady state and time resolved fluorescence spectroscopy using unique ethidium bromide dye release assay confirmed an elevated amount of abasic site cleavage of the TATA box sequence as compared to the core CpG island. Reaction kinetics showed that catalytic efficiency of APE1 for abasic site cleavage of core CpG island sequence was ∼4 times lower as compared to that of the TATA box. Higher value of Km was obtained from the core CpG island sequence than the TATA box sequence. This suggests a greater binding effect of APE1 enzyme on TATA sequence that signifies a prominent role of the sequence context of the DNA substrate. Evidently, a faster response from APE1 was obtained for clustered abasic damage repair of TATA box core sequences than CpG island consensus sequences. The neighboring bases of the abasic sites in the complementary DNA strand were found to have significant contribution in addition to the flanking bases in modulating APE1 activity. The repair refractivity of the bistranded clustered abasic sites arise from the slow processing of the second abasic site, consequently resulting in decreased overall production of potentially lethal double strand breaks.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2016

Impeded repair of abasic site damaged lesions in DNA adsorbed over functionalized multiwalled carbon nanotube and graphene oxide

Rina Kumari; Titash Mondal; Anil K. Bhowmick; Prolay Das

The processing of abasic site DNA damage lesions in extracellular DNA in the presence of engineered carbon nanomaterials (CNMs) is demonstrated. The efficacy of the apurinic-apyrimidinic endonuclease 1 (APE1) in the cleavage of abasic site lesions in the presence of carboxylated multi-walled carbon nanotubes (MWCNT-COOH) and graphene oxide (GO) are compared. The CNMs were found to perturb the incision activity of APE1. The reason for such perturbation process was anticipated to take place either by the non-specific adsorption of APE1 over the free surface of the CNMs or steric hindrance offered by the CNM-DNA complex. Accordingly, bovine serum albumin (BSA) was selectively utilized to block the free surface of the CNM-DNA hybrid material. Further treatment of the CNM-DNA-BSA complex with APE1 resulted in a marginal increase in APE1 efficiency. This indicates that APE1 in solution is unable to process the abasic sites on DNA adsorbed over the CNMs. However, the cleavage activity of APE1 was restored in the presence of non-ionic surfactant (Tween 20) that inhibits adsorption of the DNA on the surface of the CNMs. The conformational deformation of the DNA, along with steric hindrance induced by the CNMs resulted in the inhibition of abasic site DNA repair by APE1. Moreover, appreciable changes in the secondary structure of APE1 adsorbed over the CNMs were observed that contribute further to the repair refractivity of the abasic sites. From a toxicological viewpoint, these findings can be extended to the study of the effect of engineered nanoparticles in the intracellular DNA repair process.


Journal of Biological Inorganic Chemistry | 2014

Binding and interaction of di- and tri-substituted organometallic triptycene palladium complexes with DNA

Rina Kumari; Sourav Bhowmick; Neeladri Das; Prolay Das

Abstract Two triptycene-based ligands with pendant bromophenyl units have been prepared. These triptycene derivatives have been used as synthons for the synthesis of di and tri nuclear palladium complexes. The organic molecules and their corresponding organometallic complexes have been fully characterized using nuclear magnetic resonance (NMR), infrared (IR) spectroscopy and mass spectrometry. The mode of binding and effect of the complexes on pUC19 plasmid, calf thymus DNA and oligomer duplex DNA have been investigated by a host of analytical methods. The complexes brought about unwinding of supercoiled plasmid and the unwinding angle was found to be related to the binding affinity of the complexes with DNA, where both these parameters were guided by the structure of the complexes. Concentration-dependent inhibition of endonuclease activity of SspI and BamHI by the complexes indicates preference for G/C sequence for binding to DNA. However, neither the complexes did not introduce any cleavage at abasic site in oligomer duplex DNA, nor they created linear form of the plasmid upon co-incubation with the DNA samples. The interactions of the complexes with DNA were found to be strongly guided by the structure of the complexes, where intercalation as well as groove binding was observed, without inflicting any damage to the DNA. The mode of interaction of the complexes with DNA was further confirmed by isothermal calorimetry.Graphical abstract


Chemosphere | 2014

Processing of abasic site damaged lesions by APE1 enzyme on DNA adsorbed over normal and organomodified clay.

Bhavini Kumari; Shib Shankar Banerjee; Vandana Singh; Prolay Das; Anil K. Bhowmick

The efficiency of the apurinic/apyrimidinic endonuclease (APE1) DNA repair enzyme in the processing of abasic site DNA damage lesions at precise location in DNA oligomer duplexes that are adsorbed on clay surfaces was evaluated. Three different forms of clay namely montmorillonite, quaternary ammonium salt modified montmorillonite and its boiled counterpart i.e. partially devoid of organic moiety were used for a comparative study of adsorption, desorption and DNA repair efficiency on their surfaces. The interaction between the DNA and the clay was analysed by X-ray diffraction, Atomic force microscopy, UV-Vis spectroscopy and Infrared spectroscopy. The abasic site cleavage efficiency of APE1 enzyme was quantitatively evaluated by polyacrylamide gel electrophoresis. Apart from the difference in the DNA adsorption or desorption capacity of the various forms of clay, substantial variation in the repair efficiency of abasic sites initiated by the APE1 enzyme on the clay surfaces was observed. The incision efficiency of APE1 enzyme at abasic sites was found to be greatly diminished, when the DNA was adsorbed over organomodified montmorillonite. The reduced repair activity indicates an important role of the pendant surfactant groups on the clay surfaces in directing APE1 mediated cleavage of abasic site DNA damage lesions.

Collaboration


Dive into the Prolay Das's collaboration.

Top Co-Authors

Avatar

Bhavini Kumari

Indian Institute of Technology Patna

View shared research outputs
Top Co-Authors

Avatar

Rina Kumari

Indian Institute of Technology Patna

View shared research outputs
Top Co-Authors

Avatar

Vandana Singh

Indian Institute of Technology Patna

View shared research outputs
Top Co-Authors

Avatar

Seema Singh

Indian Institute of Technology Patna

View shared research outputs
Top Co-Authors

Avatar

Kislay K. Sinha

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Manoj K. Singh

Bhabha Atomic Research Centre

View shared research outputs
Top Co-Authors

Avatar

Neeladri Das

Indian Institute of Technology Patna

View shared research outputs
Top Co-Authors

Avatar

Sourav Bhowmick

Indian Institute of Technology Patna

View shared research outputs
Top Co-Authors

Avatar

Anil K. Bhowmick

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Sonam Kumari

Indian Institute of Technology Patna

View shared research outputs
Researchain Logo
Decentralizing Knowledge