Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Przemysław B. Radwański is active.

Publication


Featured researches published by Przemysław B. Radwański.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

In vivo human time-exposure study of orally dosed commercial silver nanoparticles.

Mark A. Munger; Przemysław B. Radwański; Greg Hadlock; Greg Stoddard; Akram Shaaban; Jonathan L. Falconer; David W. Grainger; Cassandra E. Deering-Rice

UNLABELLED Human biodistribution, bioprocessing and possible toxicity of nanoscale silver receive increasing health assessment. We prospectively studied commercial 10- and 32-ppm nanoscale silver particle solutions in a single-blind, controlled, cross-over, intent-to-treat, design. Healthy subjects (n=60) underwent metabolic, blood counts, urinalysis, sputum induction, and chest and abdomen magnetic resonance imaging. Silver serum and urine content were determined. No clinically important changes in metabolic, hematologic, or urinalysis measures were identified. No morphological changes were detected in the lungs, heart or abdominal organs. No significant changes were noted in pulmonary reactive oxygen species or pro-inflammatory cytokine generation. In vivo oral exposure to these commercial nanoscale silver particle solutions does not prompt clinically important changes in human metabolic, hematologic, urine, physical findings or imaging morphology. Further study of increasing time exposure and dosing of silver nanoparticulate silver, and observation of additional organ systems are warranted to assert human toxicity thresholds. FROM THE CLINICAL EDITOR In this study, the effects of commercially available nanoparticles were studied in healthy volunteers, concluding no detectable toxicity with the utilized comprehensive assays and tests. As the authors rightfully state, further studies are definitely warranted. Studies like this are much needed for the more widespread application of nanomedicine.


Journal of Biological Chemistry | 2007

Cyclic Nucleotide Phosphodiesterase PDE1C1 in Human Cardiac Myocytes

Fabrice Vandeput; Sharon L. Wolda; Judith Krall; Ryan Hambleton; Lothar Uher; Kim N. McCaw; Przemysław B. Radwański; Vincent Florio; Matthew A. Movsesian

Isoforms in the PDE1 family of cyclic nucleotide phosphodiesterases were recently found to comprise a significant portion of the cGMP-inhibited cAMP hydrolytic activity in human hearts. We examined the expression of PDE1 isoforms in human myocardium, characterized their catalytic activity, and quantified their contribution to cAMP hydrolytic and cGMP hydrolytic activity in subcellular fractions of this tissue. Western blotting with isoform-selective anti-PDE1 monoclonal antibodies showed PDE1C1 to be the principal isoform expressed in human myocardium. Immunohistochemical analysis showed that PDE1C1 is distributed along the Z-lines and M-lines of cardiac myocytes in a striated pattern that differs from that of the other major dual-specificity cyclic nucleotide phosphodiesterase in human myocardium, PDE3A. Most of the PDE1C1 activity was recovered in soluble fractions of human myocardium. It binds both cAMP and cGMP with Km values of ∼1 μm and hydrolyzes both substrates with similar catalytic rates. PDE1C1 activity in subcellular fractions was quantified using a new PDE1-selective inhibitor, IC295. At substrate concentrations of 0.1 μm, PDE1C1 constitutes the great majority of cAMP hydrolytic and cGMP hydrolytic activity in soluble fractions and the majority of cGMP hydrolytic activity in microsomal fractions, whereas PDE3 constitutes the majority of cAMP hydrolytic activity in microsomal fractions. These results indicate that PDE1C1 is expressed at high levels in human cardiac myocytes with an intracellular distribution distinct from that of PDE3A and that it may have a role in the integration of cGMP-, cAMP- and Ca2+-mediated signaling in these cells.


Circulation | 2015

Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo

Patric Glynn; Hassan Musa; Xiangqiong Wu; Sathya D. Unudurthi; Sean C. Little; Lan Qian; Patrick J. Wright; Przemysław B. Radwański; Sandor Gyorke; Peter J. Mohler; Thomas J. Hund

Background— Voltage-gated Na+ channels (Nav) are essential for myocyte membrane excitability and cardiac function. Nav current (INa) is a large-amplitude, short-duration spike generated by rapid channel activation followed immediately by inactivation. However, even under normal conditions, a small late component of INa (INa,L) persists because of incomplete/failed inactivation of a subpopulation of channels. Notably, INa,L is directly linked with both congenital and acquired disease states. The multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) has been identified as an important activator of INa,L in disease. Several potential CaMKII phosphorylation sites have been discovered, including Ser571 in the Nav1.5 DI-DII linker, but the molecular mechanism underlying CaMKII-dependent regulation of INa,L in vivo remains unknown. Methods and Results— To determine the in vivo role of Ser571, 2 Scn5a knock-in mouse models were generated expressing either: (1) Nav1.5 with a phosphomimetic mutation at Ser571 (S571E), or (2) Nav1.5 with the phosphorylation site ablated (S571A). Electrophysiology studies revealed that Ser571 regulates INa,L but not other channel properties previously linked to CaMKII. Ser571-mediated increases in INa,L promote abnormal repolarization and intracellular Ca2+ handling and increase susceptibility to arrhythmia at the cellular and animal level. Importantly, Ser571 is required for maladaptive remodeling and arrhythmias in response to pressure overload. Conclusions— Our data provide the first in vivo evidence for the molecular mechanism underlying CaMKII activation of the pathogenic INa,L. Relevant for improved rational design of potential therapies, our findings demonstrate that Ser571-dependent regulation of Nav1.5 specifically tunes INa,L without altering critical physiological components of the current.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Decreased RyR2 refractoriness determines myocardial synchronization of aberrant Ca2+ release in a genetic model of arrhythmia

Lucia Brunello; Jessica L. Slabaugh; Przemysław B. Radwański; Hsiang Ting Ho; Andriy E. Belevych; Qing Lou; Haiyan Chen; Carlo Napolitano; Francesco Lodola; Silvia G. Priori; Vadim V. Fedorov; Pompeo Volpe; Michael Fill; Paul M. L. Janssen; Sandor Gyorke

Dysregulated intracellular Ca2+ signaling is implicated in a variety of cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia. Spontaneous diastolic Ca2+ release (DCR) can induce arrhythmogenic plasma membrane depolarizations, although the mechanism responsible for DCR synchronization among adjacent myocytes required for ectopic activity remains unclear. We investigated the synchronization mechanism(s) of DCR underlying untimely action potentials and diastolic contractions (DCs) in a catecholaminergic polymorphic ventricular tachycardia mouse model with a mutation in cardiac calsequestrin. We used a combination of different approaches including single ryanodine receptor channel recording, optical imaging (Ca2+ and membrane potential), and contractile force measurements in ventricular myocytes and intact cardiac muscles. We demonstrate that DCR occurs in a temporally and spatially uniform manner in both myocytes and intact myocardial tissue isolated from cardiac calsequestrin mutation mice. Such synchronized DCR events give rise to triggered electrical activity that results in synchronous DCs in the myocardium. Importantly, we establish that synchronization of DCR is a result of a combination of abbreviated ryanodine receptor channel refractoriness and the preceding synchronous stimulated Ca2+ release/reuptake dynamics. Our study reveals how aberrant DCR events can become synchronized in the intact myocardium, leading to triggered activity and the resultant DCs in the settings of a cardiac rhythm disorder.


Cardiovascular Research | 2013

'Ryanopathy': causes and manifestations of RyR2 dysfunction in heart failure.

Andriy E. Belevych; Przemysław B. Radwański; Cynthia A. Carnes; Sandor Gyorke

The cardiac ryanodine receptor (RyR2), a Ca(2+) release channel on the membrane of the sarcoplasmic reticulum (SR), plays a key role in determining the strength of the heartbeat by supplying Ca(2+) required for contractile activation. Abnormal RyR2 function is recognized as an important part of the pathophysiology of heart failure (HF). While in the normal heart, the balance between the cytosolic and intra-SR Ca(2+) regulation of RyR2 function maintains the contraction-relaxation cycle, in HF, this behaviour is compromised by excessive post-translational modifications of the RyR2. Such modification of the Ca(2+) release channel impairs the ability of the RyR2 to properly deactivate leading to a spectrum of Ca(2+)-dependent pathologies that include cardiac systolic and diastolic dysfunction, arrhythmias, and structural remodelling. In this article, we present an overview of recent advances in our understanding of the underlying causes and pathological consequences of abnormal RyR2 function in the failing heart. We also discuss the implications of these findings for HF therapy.


Cardiovascular Research | 2015

Neuronal Na+ channel blockade suppresses arrhythmogenic diastolic Ca2+ release

Przemysław B. Radwański; Lucia Brunello; Rengasayee Veeraraghavan; Hsiang-Ting Ho; Qing Lou; Michael A. Makara; Andriy E. Belevych; Mircea Anghelescu; Silvia G. Priori; Pompeo Volpe; Thomas J. Hund; Paul M. L. Janssen; Peter J. Mohler; John H.B. Bridge; Steven Poelzing; Sandor Gyorke

AIMS Sudden death resulting from cardiac arrhythmias is the most common consequence of cardiac disease. Certain arrhythmias caused by abnormal impulse formation including catecholaminergic polymorphic ventricular tachycardia (CPVT) are associated with delayed afterdepolarizations resulting from diastolic Ca2+ release (DCR) from the sarcoplasmic reticulum (SR). Despite high response of CPVT to agents directly affecting Ca2+ cycling, the incidence of refractory cases is still significant. Surprisingly, these patients often respond to treatment with Na+ channel blockers. However, the relationship between Na+ influx and disturbances in Ca2+ handling immediately preceding arrhythmias in CPVT remains poorly understood and is the object of this study. METHODS AND RESULTS We performed optical Ca2+ and membrane potential imaging in ventricular myocytes and intact cardiac muscles as well as surface ECGs on a CPVT mouse model with a mutation in cardiac calsequestrin. We demonstrate that a subpopulation of Na+ channels (neuronal Na+ channels; nNav) colocalize with ryanodine receptor Ca2+ release channels (RyR2). Disruption of the crosstalk between nNav and RyR2 by nNav blockade with riluzole reduced and also desynchronized DCR in isolated cardiomyocytes and in intact cardiac tissue. Such desynchronization of DCR on cellular and tissue level translated into decreased arrhythmias in CPVT mice. CONCLUSIONS Thus, our study offers the first evidence that nNav contribute to arrhythmogenic DCR, thereby providing a conceptual basis for mechanism-based antiarrhythmic therapy.


Cardiovascular Research | 2011

NCX is an important determinant for premature ventricular activity in a drug-induced model of Andersen–Tawil syndrome

Przemysław B. Radwański; Steven Poelzing

AIMS Andersen-Tawil syndrome (ATS1)-associated ventricular arrhythmias are initiated by premature ventricular activity (PVA) resulting from diastolic Ca(2+) (Ca(D)) accumulation. We hypothesized that relatively high Na(+)-Ca(2+) exchanger (NCX) expression coupled with slower Ca(2+) uptake may constitute an arrhythmogenic substrate during drug-induced ATS1 (DI-ATS1). METHODS AND RESULTS DI-ATS1 was induced with 10 µmol/L BaCl(2) and 2 mmol/L [K(+)](o). Ca(2+) transients and action potentials were optically mapped from Langendorff-perfused guinea pig ventricles. Intracellular Ca(2+) handling was modulated by either direct NCX inhibition with 5 µmol/L KB-R7943 or by sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) inhibition with cyclopiazonic acid (CPA). During DI-ATS1, PVA was more frequent in left ventricular (LV)-base (LVB) vs. LV-apex (LVA) (2.2 ± 0.8 vs. 0.6 ± 0.3 PVA/10 min), consistent with greater Ca(D) (1.65 ± 0.13 vs. 1.42 ± 0.09 normalized-Ca(D) units) and western blot-assessed NCX protein expression (81.2 ± 30.9%) in LVB relative to LVA. Further, regions of high NCX (LVB) evidenced a shorter PVA coupling interval relative to regions of low NCX expression (LVA, 67.7 ± 3.5 vs. 78.5 ± 3.6%). Inhibiting NCX during DI-ATS1 lowered the incidence of ventricular tachycardias (VTs, 0 vs. 25%) and PVA (1.5 ± 0.4 vs. 4.3 ± 1.4 PVA/10 min), but it did not affect PVA coupling intervals in LVB nor LVA (70.8 ± 4.3 vs. 73.8 ± 2.5%). Conversely, inhibition of SERCA2a with CPA, thereby increasing the role of NCX in Ca(2+) handling, significantly increased the incidence of VTs and PVA relative to DI-ATS1 alone, while decreasing the PVA coupling interval in all regions. CONCLUSION PVA preferentially occurs in regions of enhanced NCX expression with relatively slower Ca(2+) uptake and during perfusion of CPA which further reduces sarcoplasmic reticular Ca(2+) uptake.


Epilepsia | 2009

Status epilepticus produces chronic alterations in cardiac sympathovagal balance.

Cameron S. Metcalf; Przemysław B. Radwański; Steven L. Bealer

Purpose:  Status epilepticus (SE) activates the autonomic nervous system, increasing sympathetic nervous system control of cardiac function during seizure activity. However, lasting effects of SE on autonomic regulation of the heart, which may contribute to mortality following seizure activity, are unknown. Therefore, autonomic control of cardiac function was assessed following SE.


Journal of Molecular and Cellular Cardiology | 2013

Store-dependent deactivation: Cooling the chain-reaction of myocardial calcium signaling

Przemysław B. Radwański; Andriy E. Belevych; Lucia Brunello; Cynthia A. Carnes; Sandor Gyorke

In heart cells, Ca(2+) released from the internal storage unit, the sarcoplasmic reticulum (SR) through ryanodine receptor (RyR2) channels is the predominant determinant of cardiac contractility. Evidence obtained in recent years suggests that SR Ca(2+) release is tightly regulated not only by cytosolic Ca(2+) but also by intra-store Ca(2+) concentration. Specifically, Ca(2+)-induced Ca(2+) release (CICR) that relies on auto-catalytic action of Ca(2+) at the cytosolic side of RyR2s is precisely balanced and counteracted by RyR2 deactivation dependent on a reciprocal decrease of Ca(2+) at the luminal side of RyR2s. Dysregulation of this inherently unstable Ca(2+) signaling is considered to be an underlying cause of triggered arrhythmias, and is associated with genetic and acquired forms of sudden cardiac death. In this article, we present an overview of recent advances in our understanding of the regulatory role luminal Ca(2+) plays in Ca(2+) handling, with a particular emphasis on the role of Ca(2+)release refractoriness in aberrant Ca(2+) release.


Heart Rhythm | 2013

Inhibition of Na+ channels ameliorates arrhythmias in a drug-induced model of Andersen-Tawil syndrome

Przemysław B. Radwański; Amara Greer-Short; Steven Poelzing

BACKGROUND Andersen-Tawil syndrome (ATS1)-associated ventricular tachycardias (VTs) are initiated by frequent, hypokalemia-exacerbated, premature ventricular activity (PVA). We previously demonstrated that a guinea pig model of drug-induced ATS1 (DI-ATS1) evidenced increased arrhythmias from regions with high Na(+)/Ca(2+)-exchange expression. OBJECTIVE Therefore, we hypothesize that reduced cytosolic Na(+) entry through either cardiac isoform of or tetrodotoxin (TTX)-sensitive Na(+) channels during DI-ATS1 can ameliorate arrhythmia burden. METHODS DI-ATS1 was induced with 10 μM BaCl(2) and 2 mM extracellular K(+). Ca(2+) transients and conduction velocity (CV) were optically mapped with indo-1 and di-4-ANEPPS, respectively, from Langendorff-perfused guinea pig ventricles. RESULTS Nonselective Na(+) channel blockade with 1 μM flecainide reduced amplitude (Ca(A)), slowed left ventricular CV, reduced tissue excitability, and abolished the incidence of VT while decreasing the incidence of PVA relative to DI-ATS1. Selective, TTX-sensitive Na(+) channel blockade with TTX (100 nM) during DI-ATS1 decreased Ca(A) and decreased the inducibility of VTs and PVA relative to DI-ATS1 without slowing CV. Ranolazine altered Ca(A), left ventricular CV, tissue excitability, and reduced inducibility of VT and PVA in a concentration-dependent manner. None of the aforementioned interventions altered diastolic Ca(2+) levels or Ca(2+) transient decay time constant. CONCLUSIONS These data suggest that cytosolic Na(+) entry and its modulation of Ca(2+) handling are necessary for arrhythmogenesis. During the loss of inward-rectifier K(+) current function, not only Na(+)/Ca(2+)-exchange dominance but Na(+) flux may determine arrhythmia burden. Therefore, selective inhibition of TTX-sensitive Na(+) channels may offer a potential therapeutic target to alleviate arrhythmias during states of Ca(2+) overload secondary to loss of inward-rectifier K(+) current function without compromising the excitability reserve.

Collaboration


Dive into the Przemysław B. Radwański's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Liu

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge