Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rengasayee Veeraraghavan is active.

Publication


Featured researches published by Rengasayee Veeraraghavan.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Interstitial volume modulates the conduction velocity-gap junction relationship

Rengasayee Veeraraghavan; Mohamed E. Salama; Steven Poelzing

Cardiac conduction through gap junctions is an important determinant of arrhythmia susceptibility. Yet, the relationship between degrees of G(j) uncoupling and conduction velocity (θ) remains controversial. Conflicting results in similar experiments are normally attributed to experimental differences. We hypothesized that interstitial volume modulates conduction velocity and its dependence on G(j). Interstitial volume (V(IS)) was quantified histologically from guinea pig right ventricle. Optical mapping was used to quantify conduction velocity and anisotropy (AR(θ)). Albumin (4 g/l) decreased histologically assessed V(IS), increased transverse θ by 71 ± 10%, and lowered AR(θ). Furthermore, albumin did not change isolated cell size. Conversely, mannitol increased V(IS), decreased transverse θ by 24 ± 4%, and increased AR(θ). Mannitol also decreased cell width by 12%. Furthermore, mannitol was associated with spontaneous ventricular tachycardias in three of eight animals relative to zero of 15 during control. The θ-G(j) relationship was assessed using the G(j) uncoupler carbenoxolone (CBX). Whereas 13 μM CBX did not significantly affect θ during control, it slowed transverse θ by 38 ± 9% during mannitol (edema). These data suggest changes in V(IS) modulate θ, AR(θ), and the θ-G(j) relationship and thereby alter arrhythmia susceptibility. Therefore, V(IS) may underlie arrhythmia susceptibility, particularly in diseases associated with gap junction remodeling.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Mechanisms of Cardiac Conduction: A History of Revisions

Rengasayee Veeraraghavan; Robert G. Gourdie; Steven Poelzing

Cardiac conduction is the process by which electrical excitation spreads through the heart, triggering individual myocytes to contract in synchrony. Defects in conduction disrupt synchronous activation and are associated with life-threatening arrhythmias in many pathologies. Therefore, it is scarcely surprising that this phenomenon continues to be the subject of active scientific inquiry. Here we provide a brief review of how the conceptual understanding of conduction has evolved over the last century and highlight recent, potentially paradigm-shifting developments.


Trends in Cardiovascular Medicine | 2013

The perinexus: Sign-post on the path to a new model of cardiac conduction?

J. Matthew Rhett; Rengasayee Veeraraghavan; Steven Poelzing; Robert G. Gourdie

The perinexus is a recently identified microdomain surrounding the cardiac gap junction that contains elevated levels of connexin43 and the sodium channel protein, Nav1.5. Ongoing work has established a role for the perinexus in regulating gap junction aggregation. However, recent studies have raised the possibility of a perinexal contribution at the gap junction cleft to intercellular propagation of action potential via non-electrotonic mechanisms. The latter possibility could modify the current theoretical understanding of cardiac conduction, help explain paradoxical experimental findings, and open up entirely new avenues for antiarrhythmic therapy. We review recent structural insights into the perinexus and its potential novel functional role in cardiac-excitation spread, highlighting presently unanswered questions, the evidence for ephaptic conduction in the heart and how structural insights may help complete this picture.


Cardiovascular Research | 2015

Neuronal Na+ channel blockade suppresses arrhythmogenic diastolic Ca2+ release

Przemysław B. Radwański; Lucia Brunello; Rengasayee Veeraraghavan; Hsiang-Ting Ho; Qing Lou; Michael A. Makara; Andriy E. Belevych; Mircea Anghelescu; Silvia G. Priori; Pompeo Volpe; Thomas J. Hund; Paul M. L. Janssen; Peter J. Mohler; John H.B. Bridge; Steven Poelzing; Sandor Gyorke

AIMS Sudden death resulting from cardiac arrhythmias is the most common consequence of cardiac disease. Certain arrhythmias caused by abnormal impulse formation including catecholaminergic polymorphic ventricular tachycardia (CPVT) are associated with delayed afterdepolarizations resulting from diastolic Ca2+ release (DCR) from the sarcoplasmic reticulum (SR). Despite high response of CPVT to agents directly affecting Ca2+ cycling, the incidence of refractory cases is still significant. Surprisingly, these patients often respond to treatment with Na+ channel blockers. However, the relationship between Na+ influx and disturbances in Ca2+ handling immediately preceding arrhythmias in CPVT remains poorly understood and is the object of this study. METHODS AND RESULTS We performed optical Ca2+ and membrane potential imaging in ventricular myocytes and intact cardiac muscles as well as surface ECGs on a CPVT mouse model with a mutation in cardiac calsequestrin. We demonstrate that a subpopulation of Na+ channels (neuronal Na+ channels; nNav) colocalize with ryanodine receptor Ca2+ release channels (RyR2). Disruption of the crosstalk between nNav and RyR2 by nNav blockade with riluzole reduced and also desynchronized DCR in isolated cardiomyocytes and in intact cardiac tissue. Such desynchronization of DCR on cellular and tissue level translated into decreased arrhythmias in CPVT mice. CONCLUSIONS Thus, our study offers the first evidence that nNav contribute to arrhythmogenic DCR, thereby providing a conceptual basis for mechanism-based antiarrhythmic therapy.


Cell Communication and Adhesion | 2014

Intercellular Electrical Communication in the Heart: A New, Active Role for the Intercalated Disk

Rengasayee Veeraraghavan; Steven Poelzing; Robert G. Gourdie

Abstract Cardiac conduction is the propagation of electrical excitation through the heart and is responsible for triggering individual myocytes to contract in synchrony. Canonically, this process has been thought to occur electrotonically, by means of direct flow of ions from cell to cell. The intercalated disk (ID), the site of contact between adjacent myocytes, has been viewed as a structure composed of mechanical junctions that stabilize the apposition of cell membranes and gap junctions which constitute low resistance pathways between cells. However, emerging evidence suggests a more active role for structures within the ID in mediating intercellular electrical communication by means of non-canonical ephaptic mechanisms. This review will discuss the role of the ID in the context of the canonical, electrotonic view of conduction and highlight new, emerging possibilities of its playing a more active role in ephaptic coupling between cardiac myocytes.


Molecular Biology of the Cell | 2016

Stochastic optical reconstruction microscopy-based relative localization analysis (STORM-RLA) for quantitative nanoscale assessment of spatial protein organization

Rengasayee Veeraraghavan; Robert G. Gourdie

Stochastic optical reconstruction microscopy–based relative localization analysis (STORM-RLA) is a novel method for the high-throughput quantification of spatial protein organization from three-dimensional single-molecule positional data.


FEBS Letters | 2014

Old cogs, new tricks: A scaffolding role for connexin43 and a junctional role for sodium channels?

Rengasayee Veeraraghavan; Steven Poelzing; Robert G. Gourdie

Cardiac conduction is the process by which electrical excitation is communicated from cell to cell within the heart, triggering synchronous contraction of the myocardium. The role of conduction defects in precipitating life‐threatening arrhythmias in various disease states has spurred scientific interest in the phenomenon. While the understanding of conduction has evolved greatly over the last century, the process has largely been thought to occur via movement of charge between cells via gap junctions. However, it has long been hypothesized that electrical coupling between cardiac myocytes could also occur ephaptically, without direct transfer of ions between cells. This review will focus on recent insights into cardiac myocyte intercalated disk ultrastructure and their implications for conduction research, particularly the ephaptic coupling hypothesis.


Pflügers Archiv: European Journal of Physiology | 2016

Potassium channels in the Cx43 gap junction perinexus modulate ephaptic coupling: an experimental and modeling study.

Rengasayee Veeraraghavan; Joyce Lin; James P. Keener; Robert G. Gourdie; Steven Poelzing

It was recently demonstrated that cardiac sodium channels (Nav1.5) localized at the perinexus, an intercalated disc (ID) nanodomain associated with gap junctions (GJ), may contribute to electrical coupling between cardiac myocytes via an ephaptic mechanism. Impairment of ephaptic coupling by acute interstitial edema (AIE)-induced swelling of the perinexus was associated with arrhythmogenic, anisotropic conduction slowing. Given that Kir2.1 has also recently been reported to localize at intercalated discs, we hypothesized that Kir2.1 channels may reside within the perinexus and that inhibiting them may mitigate arrhythmogenic conduction slowing observed during AIE. Using gated stimulated emission depletion (gSTED) and stochastic optical reconstruction microscopy (STORM) super-resolution microscopy, we indeed find that a significant proportion of Kir2.1 channels resides within the perinexus. Moreover, whereas Nav1.5 inhibition during AIE exacerbated arrhythmogenic conduction slowing, inhibiting Kir2.1 channels during AIE preferentially increased transverse conduction velocity—decreasing anisotropy and ameliorating arrhythmia risk compared to AIE alone. Comparison of our results with a nanodomain computer model identified enrichment of both Nav1.5 and Kir2.1 at intercalated discs as key factors underlying the experimental observations. We demonstrate that Kir2.1 channels are localized within the perinexus alongside Nav1.5 channels. Further, targeting Kir2.1 modulates intercellular coupling between cardiac myocytes, anisotropy of conduction, and arrhythmia propensity in a manner consistent with a role for ephaptic coupling in cardiac conduction. For over half a century, electrical excitation in the heart has been thought to occur exclusively via gap junction-mediated ionic current flow between cells. Further, excitation was thought to depend almost exclusively on sodium channels with potassium channels being involved mainly in returning the cell to rest. Here, we demonstrate that sodium and potassium channels co-reside within nanoscale domains at cell-to-cell contact sites. Experimental and computer modeling results suggest a role for these channels in electrical coupling between cardiac muscle cells via an ephaptic mechanism working in tandem with gap junctions. This new insight into the mechanism of cardiac electrical excitation could pave the way for novel therapies against cardiac rhythm disturbances.


JACC: Basic to Translational Science | 2016

Neuronal Na+ Channels Are Integral Components of Pro-Arrhythmic Na+/Ca2+ Signaling Nanodomain That Promotes Cardiac Arrhythmias During β-Adrenergic Stimulation

Przemysław B. Radwański; Hsiang-Ting Ho; Rengasayee Veeraraghavan; Lucia Brunello; Bin Liu; Andriy E. Belevych; Sathya D. Unudurthi; Michael A. Makara; Silvia G. Priori; Pompeo Volpe; Antonis A. Armoundas; Wolfgang H. Dillmann; Björn C. Knollmann; Peter J. Mohler; Thomas J. Hund; Sandor Gyorke

Summary Although triggered arrhythmias including catecholaminergic polymorphic ventricular tachycardia (CPVT) are often caused by increased levels of circulating catecholamines, the mechanistic link between β-adrenergic receptor (AR) stimulation and the subcellular/molecular arrhythmogenic trigger(s) is unclear. Here, we systematically investigated the subcellular and molecular consequences of β-AR stimulation in the promotion of catecholamine-induced cardiac arrhythmias. Using mouse models of cardiac calsequestrin-associated CPVT, we demonstrate that a subpopulation of Na+ channels, mainly the neuronal Na+ channels (nNav), colocalize with ryanodine receptor 2 (RyR2) and Na+/Ca2+ exchanger (NCX) and are a part of the β-AR-mediated arrhythmogenic process. Specifically, augmented Na+ entry via nNav in the settings of genetic defects within the RyR2 complex and enhanced sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA)-mediated SR Ca2+ refill is both an essential and a necessary factor for arrhythmogenesis. Furthermore, we show that augmentation of Na+ entry involves β-AR–mediated activation of CAMKII, subsequently leading to nNav augmentation. Importantly, selective pharmacological inhibition as well as silencing of Nav1.6 inhibit myocyte arrhythmic potential and prevent arrhythmias in vivo. Taken together, these data suggest that the arrhythmogenic alteration in Na+/Ca2+ handling evidenced ruing β-AR stimulation results, at least in part, from enhanced Na+ influx through nNav. Therefore, selective inhibition of these channels and of Nav1.6 in particular can serve as a potential antiarrhythmic therapy.


Heart Rhythm | 2010

Cytosolic calcium accumulation and delayed repolarization associated with ventricular arrhythmias in a guinea pig model of Andersen-Tawil syndrome

Przemysław B. Radwański; Rengasayee Veeraraghavan; Steven Poelzing

BACKGROUND Andersen-Tawil syndrome (ATS1)-associated ventricular arrhythmias are initiated by frequent, hypokalemia-exacerbated, triggered activity. Previous ex vivo studies in drug-induced Andersen-Tawil syndrome (DI-ATS1) models have proposed that arrhythmia propensity in DI-ATS1 derives from cytosolic Ca(2+) ([Ca(2+)](i)) accumulation leading to increased triggered activity. OBJECTIVE The purpose of this study was to test the hypothesis that elevated [Ca(2+)](i) with concomitant APD prolongation, rather than APD dispersion, underlies arrhythmia propensity during DI-ATS1. METHODS DI-ATS1 was induced in isolated guinea pig ventricles by perfusion of 2 mM KCl Tyrode solution containing 10 μM BaCl(2). APD and [Ca(2+)](i) from the anterior epicardium were quantified by ratiometric optical voltage (di-4-ANEPPS) or Ca(2+) (Indo-1) mapping during right ventricular pacing with or without the ATP-sensitive potassium channel opener pinacidil (15 μM). RESULTS APD gradients under all conditions were insufficient for arrhythmia induction by programmed stimulation. However, 38% of DI-ATS1 preparations experienced ventricular tachycardias (VTs), and all preparations experienced a high incidence of premature ventricular complexes (PVCs). Pinacidil decreased APD and APD dispersion and reduced VTs (to 6%), and PVC frequency (by 79.5%). However, PVC frequency remained significantly greater relative to control (0.5% ± 0.3% of DI-ATS1). Importantly, increased arrhythmia propensity during DI-ATS1 was associated with diastolic [Ca(2+)](i) accumulation and increased [Ca(2+)](i) transient amplitudes. Pinacidil partially attenuated the former but did not alter the latter. CONCLUSION The study data suggest that arrhythmias during DI-ATS1 may be a result of triggered activity secondary to prolonged APD and altered [Ca(2+)](i) cycling and less likely dependent on large epicardial APD gradients forming the substrate for reentry. Therefore, therapies aimed at reducing [Ca(2+)](i) rather than APD gradients may prove effective in treatment of ATS1.

Collaboration


Dive into the Rengasayee Veeraraghavan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Gorelik

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anita Alvarez-Laviada

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoping Wan

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge