Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pui-Kai Li is active.

Publication


Featured researches published by Pui-Kai Li.


The Journal of Steroid Biochemistry and Molecular Biology | 2005

Translational studies on aromatase, cyclooxygenases, and enzyme inhibitors in breast cancer☆

Robert W. Brueggemeier; Edgar S. Diaz-Cruz; Pui-Kai Li; Yasuro Sugimoto; Young C. Lin; Charles L. Shapiro

Aromatase expression and enzyme activity in breast cancer patients is greater in or near the tumor tissue compared with the normal breast tissue. Regulation of aromatase expression in human tissues is quite complex, involving alternative promoter sites that provide tissue-specific control. Previous studies in our laboratories suggested a strong association between aromatase (CYP19) gene expression and the expression of cyclooxygenase (COX) genes. Our hypothesis is that higher levels of COX expression result in higher levels of prostaglandin E2 (PGE2), which in turn increases CYP19 expression through increases in intracellular cyclic AMP levels. This biochemical mechanism may explain the beneficial effects of non-steroidal anti-inflammatory drugs (NSAIDs) on reducing the risks of breast cancer. The effects of NSAIDs (ibuprofen, piroxicam, and indomethacin), a COX-1 selective inhibitor (SC-560), and COX-2 selective inhibitors (celecoxib, niflumic acid, nimesulide, NS-398, and SC-58125) on aromatase activity and CYP19 expression were investigated in breast cancer cell culture systems. Dose-dependent decreases in aromatase activity were observed following treatment with an NSAID or COX inhibitor, with the most effective agents being COX selective inhibitors. Real time PCR analysis of aromatase gene expression showed a significant decrease in mRNA levels in treated cells when compared to vehicle control. These results suggest that the effect of COX inhibitors on aromatase occurs at the transcriptional level. To further probe these interactions, short interfering RNAs (siRNA) were designed against either human CYP19 mRNA or human COX-2 mRNA. Treatment of breast cancer cells with aromatase siRNAs suppressed CYP19 mRNA and aromatase enzyme activity. Finally, treatment with COX-2 siRNAs downregulated the expression of COX-2 mRNA; furthermore, the siCOX-2-mediated suppression of COX-2 also resulted in suppression of aromatase mRNA. In summary, pharmacological regulation of aromatase and cyclooxygenases can act locally in an autocrine fashion to decrease the biosynthesis of estrogen and may provide additional therapy options for patients with hormone-dependent breast cancer.


Steroids | 2002

Inhibition of steryl sulfatase activity in LNCaP human prostate cancer cells

Kyle W. Selcer; Heidi L Kabler; Jennifer Sarap; Zili Xiao; Pui-Kai Li

The enzyme steryl sulfatase may help support the growth of hormone-dependent tumors, including prostate cancers, by facilitating the conversion of circulating precursor steroids to active hormones. We sought to determine the presence of steryl sulfatase activity in the androgen-dependent human prostate cancer cell line LNCaP, and to determine if this activity was inhibited by known steryl sulfatase inhibitors. Intact LNCaP cultures had steryl sulfatase activity, as determined by conversion of [3H]estrone sulfate (E(1)S) to unconjugated steroids. The level of steryl sulfatase activity was relatively low (4.6 pmol/18 h/million cells) compared to MDA-MB-231 breast cancer cells (284.0 pmol/18 h/million cells). The observed activity in both cell lines was blocked by addition of 1 microM estrone sulfamate (EMATE), an active-site-directed, steroidal inhibitor of steryl sulfatase. Steryl sulfatase activity was also inhibited by Danazol, and by (p-O-sulfamoyl)-tetradecanoyl tyramine (C2-14), a non-steroidal inhibitor. Microsomes prepared from LNCaP cultures also showed steryl sulfatase activity, as determined by hydrolysis of [3H]E(1)S and [3H]dehydroepiandrosterone sulfate (DHEAS) to unconjugated forms. LNCaP and MDA-MB-231 microsomes both hydrolyzed E(1)S about two times faster than DHEAS. Hydrolysis of E(1)S in LNCaP and MDA-MB-231 microsomes was blocked by steryl sulfatase inhibitors with the following relative potencies: EMATE>C2-14>Danazol. These data demonstrate that LNCaP prostate cancer cells contain a steryl sulfatase with properties similar to that found in human breast cancer cells, and that the activity of this enzyme can be blocked by known steryl sulfatase inhibitors. Steryl sulfatase inhibitors may be useful as an adjuvant to androgen deprivation therapy for prostate cancer.


Vitamins and Hormones Series | 2000

Melatonin receptors and ligands.

Paula A. Witt-Enderby; Pui-Kai Li

The goal of the article is to provide a clearer understanding of how melatonin and its related analogs interact with melatonin receptors with the hope of developing important tools and agents of significant clinical and scientific importance. The review provides a compilation of the currently published melatonergic ligands and their relative affinities for melatonin receptors and discusses the importance of developing reversible, high-affinity, and subtype selective melatonin receptor antagonists. In addition, the review discusses the utility of developing high-affinity charged melatonergic ligands and irreversible ligands. Finally, the review discusses some of the problems associated with the current models used to study receptor pharmacology and function. As the availability of tools increases in the melatonin receptor field, a great body of knowledge is also gained about the structure of the melatonin receptor and the role that specific melatonin receptor subtypes have in physiologic processes. Further design, synthesis, and application of melatonergic ligands will lead us to a clearer understanding of the role that melatonin and its receptors play in humans.


The Journal of Steroid Biochemistry and Molecular Biology | 1990

Biochemical and pharmacological development of steroidal inhibitors of aromatase

Robert W. Brueggemeier; Pui-Kai Li; Hsiu-Ho Chen; Patrick P. Moh; Nancy E. Katlic

Androstenedione analogs containing 7 alpha-substituents have proven to be potent inhibitors of aromatase both in vitro and in vivo. Several of these agents have exhibited higher affinity for the enzyme complex than the substrate. In order to examine further the interaction(s) of 7-substituted steroids with aromatase, biochemical and pharmacological studies were performed on 7 alpha-thiosubstituted androstenediones and 7-substituted 4,6-androstadiene-3,17-diones. Potent inhibition of aromatase activity in human placental microsomes has been observed with several new 7 alpha-thiosubstituted androstenediones. 7-Benzyl- and 7-phenethyl-4,6-androstadiene-3,17-diones effectively inhibited microsomal aromatase, with apparent Kis ranging from 61 to 174 nM. On the other hand, 7-phenyl-4,6-androstadiene-3,17-dione exhibited poor activity, with an apparent Ki of 1.42 microM. Similar inhibitory activity was observed with reconstituted, purified cytochrome P450Arom preparations. Additionally, these agents were evaluated for inhibition of aromatase activity in two human carcinoma cell lines, the MCF-7 human mammary cancer line and the JAr choriocarcinoma line. The 7 alpha-thiosubstituted androstenediones and 7-substituted 4,6-androstadiene-3,17-diones produced dose-dependent inhibitions of aromatase activity in the cell cultures. The most effective inhibitors were the 7 alpha-substituted androstenediones, with EC50 values ranging from 7.3 to 105 nM. Finally, the JAr cell culture system exhibited prolonged inhibition of aromatase activity following exposure to 7 alpha-APTADD, suggesting enzyme inactivation by this inhibitor. Thus, these agents are effective aromatase inhibitors, and the results encourage further development of this group of medicinal agents for the treatment of estrogen-dependent mammary carcinoma.


The Journal of Steroid Biochemistry and Molecular Biology | 2007

Immunohistochemical analysis of steroid sulfatase in human tissues

Kyle W. Selcer; Heidi DiFrancesca; Abhinav B. Chandra; Pui-Kai Li

Steroid sulfatase (EC 3.1.6.2) is an enzyme that removes the sulfate group from 3beta-hydroxysteroid sulfates. This enzyme is best known for its role in estrogen production via the fetal adrenal-placental pathway during pregnancy; however, it also has important functions in other physiological and pathological steroid pathways. The objective of this study was to examine the distribution of steroid sulfatase in normal human tissues and in breast cancers using immunohistochemistry, employing a newly developed steroid sulfatase antibody. A rabbit polyclonal antiserum was generated against a peptide representing a conserved region of the steroid sulfatase protein. In Western blotting experiments using human placental microsomes, this antiserum crossreacted with a 65 kDa protein, the reported size of steroid sulfatase. The antiserum also crossreacted with single protein bands in Western blots of microsomes from two human breast cancer cell lines (MDA-MB-231 and MCF-7) and from rat liver; however, there were some size differences in the immunoreactive bands among tissues. The steroid sulfatase antibody was used in immunohistochemical analyses of individual human tissue slides as well as a human tissue microarray. For single tissues, human placenta and liver showed strong positive staining against the steroid sulfatase antibody. ER+/PR+ breast cancers also showed relatively strong levels of steroid sulfatase immunoreactivity. Normal human breast showed moderate levels of steroid sulfatase immunoreactivity, while ER-/PR- breast cancer showed weak immunoreactivity. This confirms previous reports that steroid sulfatase is higher in hormone-dependent breast cancers. For the tissue microarray, most tissues showed some detectable level of steroid sulfatase immunoreactivity, but there were considerable differences among tissues, with skin, liver and lymph nodes having the highest immunoreactivity and brain tissues having the lowest. These data reveal the utility of immunohistochemistry in evaluation of steroid sulfatase activity among tissues. The newly developed antibody should be useful in studies of both humans and rats.


Bioorganic & Medicinal Chemistry Letters | 1999

Synthesis and sulfatase inhibitory activities of (E)- and (Z)-4-hydroxytamoxifen sulfamates

Guo-Hua Chu; Amy Peters; Kyle W. Selcer; Pui-Kai Li

We report the development of (E)- and (Z)-4-hydroxytamoxifen sulfamates as estrone sulfatase inhibitors, potential therapeutic agents for the treatment of breast cancer. Both compounds competitively inhibit estrone sulfatase isolated from rat liver with apparent Ki of 35.9 microM for (E)-4-hydroxytamoxifen sulfamate and an apparent Ki of > 500 microM for the (Z) isomer.


The Journal of Steroid Biochemistry and Molecular Biology | 1991

Gossypolone suppresses progesterone synthesis in bovine luteal cells

Y. Gu; Pui-Kai Li; Young C. Lin; Yasuko Rikihisa; Robert W. Brueggemeier

Gossypolone, a proposed major metabolite of gossypol, was synthesized and investigated for its effect on progesterone synthesis in cultured bovine luteal cells. Gossypolone inhibited human chorionic gonadotropin(hCG)-stimulated progesterone secretion, reduced substrate-enhanced conversions of 25-hydroxycholesterol to pregnenolone and of pregnenolone to progesterone in a dose-dependent fashion. These findings indicate that gossypolone inhibits not only 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity, as gossypol does, but also side-chain cleavage enzyme complex (cytochrome P450scc) activity. However, the two compounds appear to have a similar potency in inhibiting progesterone secretion. Both gossypolone and gossypol (8.5 microM) induced morphological changes in cellular organelles.


Journal of Steroid Biochemistry | 1990

7-Substituted 1,4,6-androstatriene-3,17-diones as enzyme-activated irreversible inhibitors of aromatase☆

Pui-Kai Li; Robert W. Brueggemeier

7-Phenyl-1,4,6-androstatriene-3,17-dione (4), 7-benzyl-1,4,6-androstatriene-3,17-dione (5) and 7-phenethyl-1,4,6-androstatriene-3,17-dione (6) were synthesized and evaluated in vitro in human placental microsomes as enzyme-activated irreversible inhibitors of aromatase. The compounds were synthesized from appropriate 7-substituted 4,6-androstadiene-3,17-diones by reaction with DDQ under neutral conditions. All the compounds produced a first order inactivation of aromatase in the presence of NADPH but not in the absence of NADPH. Substrate 4-androstene-3,17-dione protected the enzyme from inactivation by the inhibitors. Furthermore, cysteine failed to protect aromatase from inactivation by compounds 5 and 6. In contrast, cysteine partially protected aromatase from inactivation by compound 4. Irreversibility studies illustrated the covalent nature of the inactivation by 4, 5 and 6. The above experimental evidence demonstrated that compounds 5 and 6 are effective enzyme-activated irreversible inhibitors of aromatase.


Bioorganic & Medicinal Chemistry Letters | 1997

The development of a charged melatonin receptor ligand

Pui-Kai Li; Guo-Hua Chu; Megan L. Gillen; Tejal Parekh; Paula A. Witt-Enderby

Abstract We report the synthesis and radioligand binding analysis of a novel charged melatonin receptor ligand, N-[2-(2-Trimethylammoniumethyleneoxy-7-methoxy)ethyl]propionamide iodide. The charged ligand has potential in determining whether internalization of the melatonin receptor occurs following melatonin exposure.


Bioorganic & Medicinal Chemistry Letters | 1997

Synthesis and receptor binding studies of quinolinic derivatives as melatonin receptor ligands

Pui-Kai Li; Guo-Hua Chu; Megan L. Gillen; Paula A. Witt-Enderby

We report the development of melatonin receptor ligands containing a quinolinic nucleus. Ligands containing a neutral moiety within the nucleus displayed high affinity for melatonin receptors while those analogs containing a permanently charged nucleus had very low affinity for melatonin receptors.

Collaboration


Dive into the Pui-Kai Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge