Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert W. Brueggemeier is active.

Publication


Featured researches published by Robert W. Brueggemeier.


Cancer Letters | 1999

Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens

Robert W. Brueggemeier; Anne L. Quinn; Michelle L. Parrett; Farahnaz S. Joarder; Randall E. Harris; Fredika M. Robertson

Aromatase, the enzyme system catalyzing estrogen biosynthesis, is found in stromal tissue in the breast. The increased expression of the aromatase CYP19 gene in breast cancer tissues was recently associated with a promoter region regulated through cAMP-mediated pathways. PGE2, derived from cyclooxygenase, increases intracellular cAMP levels and stimulates estrogen biosynthesis. This association suggest that local production of PGE2 via cyclooxgenase isozymes may influence estrogen biosynthesis. The present study represents the first to examine the levels of mRNA expression of CYP19, COX-1, and COX-2 genes in human breast cancer specimens and normal breast tissue samples using semi-quantitative RT-PCR methods. Positive correlations were observed between CYP19 and COX-2 and the greater extent of breast cancer cellularity. Linear regression analysis using a bivariate model shows a strong linear association between CYP19 expression and the sum of COX-1 and COX-2 expression. This significant relationship between the aromatase and cyclooxygenase enzyme systems suggests that autocrine and paracrine mechanisms may be involved in hormone-dependent breast cancer development via growth stimulation from local estrogen biosynthesis.


Life Sciences | 1995

Antiproliferative activity of gossypol and gossypolone on human breast cancer cells.

Nancy E. Gilbert; Jill E. O'Reilly; C.J.George Chang; Young C. Lin; Robert W. Brueggemeier

Gossypol is a polyphenolic aldehyde occurring naturally in cottonseed that produces antisteroidogenic activity in vivo, has been extensively investigated as a male contraceptive agent, and has demonstrated anticancer activity. Gossypolone, the major metabolite of gossypol, also prossesses antisteroidogenic activity but has not been examined for its anticancer properties. The objectives of these investigations are to compare the effects of gossypolone with those of gossypol on cell proliferation of hormone-dependent and hormone-independent human breast carcinoma cells, i.e., MCF-7, MCF-7 Adr and MDA-MB-231 cells. Gossypol and gossypolone were examined at concentrations up to 10 microM, and cellular DNA synthesis was monitored by 3H-thymidine incorporation. Gossypol and gossypolone produced dose-dependent suppression of DNA synthesis in all of the human breast cell lines examined. Gossypol produced potent antiproliferative activity in MCF-7 cells at doses as low as 30 nM. Co-incubation of MCF-7 cells with gossypol (5 microM) and estradiol (10 nM) did not alter the effects of gossypl. Treatment of human breast cancer cells with 2.5 microM of gossypol resulted in alterations in cell shape and attachment to the surface of the culture dishes. At gossypol doses of 10 microM, pericytoplasmic globuation and cytoplasmic swelling were observed in the majority of breast cancer cells. These changes in cellular morphology indicate a loss of ability of the cells to maintain normal cell membrane permeability, resulting in subsequent disorganization and loss of cytoplasmic organelles. Gossypolone is less potent than gossypol in producing these effects in the human breast cancer cell lines, whereas it possesses equipotent antisteroidogenic and antireproductive activities with gossypol. These investigations suggest that gossypol and gossypol analogs may have therapeutic potential for human breast cancer.


The Journal of Steroid Biochemistry and Molecular Biology | 2002

Signaling pathways regulating aromatase and cyclooxygenases in normal and malignant breast cells.

Jeanette A. Richards; Trevor A. Petrel; Robert W. Brueggemeier

Aromatase (estrogen synthase) is the cytochrome P450 enzyme complex that converts C(19) androgens to C(18) estrogens. Aromatase activity has been demonstrated in breast tissue in vitro, and expression of aromatase is highest in or near breast tumor sites. Thus, local regulation of aromatase by both endogenous factors as well as exogenous medicinal agents will influence the levels of estrogen available for breast cancer growth. The prostaglandin PGE(2) increases intracellular cAMP levels and stimulates estrogen biosynthesis, and our recent studies have shown a strong linear association between CYP19 expression and the sum of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) expression in breast cancer specimens. Knowledge of the signaling pathways that regulate the expression and enzyme activity of aromatase and cyclooxygenases (COXs) in stromal and epithelial breast cells will aid in understanding the interrelationships of these two enzyme systems and potentially identify novel targets for regulation. The effects of epidermal growth factor (EGF), transforming growth factor-beta (TGFbeta), and tetradecanoyl phorbol acetate (TPA) on aromatase and COXs were studied in primary cultures of normal human adipose stromal cells and in cell cultures of normal immortalized human breast epithelial cells MCF-10F, estrogen-responsive human breast cancer cells MCF-7, and estrogen-unresponsive human breast cancer cells MDA-MB-231. Levels of the constitutive COX isozyme, COX-1, were not altered by the various treatments in the cell systems studied. In breast adenocarcinoma cells, EGF and TGFbeta did not alter COX-2 levels at 24h, while TPA induced COX-2 levels by 75% in MDA-MB-231 cells. EGF and TPA in MCF-7 cells significantly increased aromatase activity while TGFbeta did not. In contrast to MCF-7 cells, TGFbeta and TPA significantly increased activity in MDA-MB-231 cells, while only a modest increase with EGF was observed. Untreated normal adipose stromal cells exhibited high basal levels of COX-1 but low to undetectable levels of COX-2. A dramatic induction of COX-2 was observed in the adipose stromal cells by EGF, TGFbeta, and TPA. Aromatase enzyme activity in normal adipose stromal cells was significantly increased by EGF, TGFbeta and TPA after 24h of treatment. In summary, the results of this investigation on the effects of several paracrine and/or autocrine signaling pathways in the regulation of expression of aromatase, COX-1, and COX-2 in breast cells has identified more complex relationships. Overall, elevated levels of these factors in the breast cancer tissue microenvironment can result in increased aromatase activity (and subsequent increased estrogen biosynthesis) via autocrine mechanisms in breast epithelial cells and via paracrine mechanisms in breast stromal cells. Furthermore, increased secretion of prostaglandins such as PGE(2) from constitutive COX-1 and inducible COX-2 isozymes present in epithelial and stromal cell compartments will result in both autocrine and paracrine actions to increase aromatase expression in the tissues.


Breast Cancer Research and Treatment | 1994

Aromatase inhibitors--mechanisms of steroidal inhibitors.

Robert W. Brueggemeier

SummaryInhibition of aromatase has been an attractive approach for examining the roles of estrogen biosynthesis in various physiological or pathological processes. Effective aromatase inhibitors can serve as potential therapeutic agents for controlling estrogen-dependent diseases such as hormone-dependent breast cancer. Investigations on the development of aromatase inhibitors have therefore expanded greatly in the past two decades. Numerous steroidal agents have been developed that have high affinities for the aromatase enzyme complex and exhibit either competitive inhibition, irreversible inhibition, or mechanism-based (enzyme-activated) inhibition. Mechanism-based inhibitors have distinct advantages in drug design, since these inhibitors are highly enzyme specific, produce prolonged inhibition, and exhibit minimal toxicities.Examination of the structure-activity relationships of the numerous steroidal aromatase inhibitors suggest that the spacial requirements for interaction of agents with the active site of aromatase are very restrictive, permitting only small structural changes to be made on the A-ring and at C-19. Incorporation of small polar substituents at the C-4 position, such as a hydroxyl group, or addition of aryl functionalities at the 7α-position of the steroid, are the exceptions, and inhibitors with such modifications exhibit enhanced affinity for the enzyme. Future investigations of steroidal aromatase inhibitors as probes of the active site of purified aromatase will provide valuable information on enzyme structure at the molecular level, will permit a more detailed examination of the mechanisms of inhibition, and will enhance the development of more specific and effective inhibitors for the treatment of estrogen-dependent breast cancer.


Molecular Pharmacology | 2006

Overcoming Trastuzumab Resistance in HER2-Overexpressing Breast Cancer Cells by Using a Novel Celecoxib-Derived Phosphoinositide-Dependent Kinase-1 Inhibitor

Ping-Hui Tseng; Yu Chieh Wang; Shu Chuan Weng; Jing Ru Weng; Chang Shi Chen; Robert W. Brueggemeier; Charles L. Shapiro; Ching Yu Chen; Sandra E. Dunn; Michael Pollak; Ching-Shih Chen

Although trastuzumab has been successfully used in patients with HER2-overexpressing metastatic breast cancer, resistance is a common problem that ultimately culminates in treatment failure. In light of the importance of Akt signaling in trastuzumabs antitumor action, we hypothesized that concurrent inhibition of Akt could enhance trastuzumab sensitivity and moreover reverse the resistant phenotype in HER2-positive breast cancer cells. Based on our finding that celecoxib mediates antitumor effects through the inhibition of phosphoinositide-dependent kinase-1 (PDK-1)/Akt signaling independently of cyclooxygenase-2 (COX-2), we used celecoxib as a scaffold to develop a COX-2-inactive PDK-1 inhibitor, 2-amino-N-[4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-acetamide (OSU-03012). Here, we investigated the effect of OSU-03012 on trastuzumab-mediated apoptosis in four breast cancer cell lines with different HER2 expression and trastuzumab-resistance status, including MDA-MB-231, BT474, SKBR3, and insulin-like growth factor-I receptor-overexpressing SKBR3 (SKBR3/IGF-IR). Effects of trastuzumab and OSU-03012, individually or in combination, on cell viability and changes in pertinent biomarkers including HER2 expression, phosphorylation of Akt, p27kip1, and the PDK-1 substrate p70S6K were assessed. OSU-03012 alone was able to trigger apoptosis in all cell lines with equal potency (IC50 = 3-4 μM), suggesting no cross-resistance with trastuzumab. Medium dose-effect analysis indicates that OSU-03012 potentiated trastuzumabs antiproliferative effect in HER2-positive cells, especially in SKBR3/IGF-IR cells, through the down-regulation of PDK-1/Akt signaling. This synergy, however, was not observed in HER2-negative MDA-MB-231 cells. This combination treatment represents a novel strategy to increase the efficacy of trastuzumab and to overcome trastuzumab resistance in the treatment of HER2-positive breast cancer.


The Journal of Steroid Biochemistry and Molecular Biology | 2001

Molecular pharmacology of aromatase and its regulation by endogenous and exogenous agents

Robert W. Brueggemeier; Jeanette A. Richards; Surachai Joomprabutra; Abhijit S. Bhat; Jennifer L. Whetstone

Aromatase (estrogen synthase) is the cytochrome P450 enzyme complex that converts C19 androgens to C18 estrogens. Aromatase activity has been demonstrated in breast tissue in vitro, and expression of aromatase is highest in or near breast tumor sites. Thus, local regulation of aromatase by both endogenous factors as well as exogenous medicinal agents will influence the levels of estrogen available for breast cancer growth. The prostaglandin E2 (PGE2) increases intracellular cAMP levels and stimulates estrogen biosynthesis, and our recent studies have shown a strong linear association between CYP19 expression and the sum of COX-1 and COX-2 expression in breast cancer specimens. PGE2 can bind to four receptor subtypes, EP1-EP4, which are coupled to different intracellular signaling pathways. In primary human breast stromal cell cultures, aromatase activity was significantly induced by PGE2, dexamethasone, and agonists for the EP1 and EP2 receptor subtypes. An EP1 antagonist, SC-19220, inhibited the induction of enzyme activity by PGE2 or 17-phenyltrinor-PGE2, an EP1 agonist. Sulprostone, an EP3 agonist, did not alter aromatase activity levels. Investigations are also underway on the regulation of aromatase by exogenous medicinal agents. Selective steroidal and nonsteroidal agents are effective in inhibiting breast tissue aromatase. The benzopyranone ring system is a molecular scaffold of considerable interest, and this scaffold is found in certain flavonoid natural products that have weak aromatase inhibitory activity. Our novel synthetic route for benzopyranones utilizes readily available salicylic acids and terminal alkynes as starting materials. The synthesis of flavones with diversity on the benzopyranone moiety and at the C-2 position occurs with good to excellent yields using these reaction conditions, resulting in an initial benzopyranone library of thirty compounds exhibiting enhanced and differential aromatase inhibition. Current medicinal chemistry efforts focus on diversifying the benzopyranone scaffold and utilizing combinatorial chemistry approaches to construct small benzopyranone libraries as potential aromatase inhibitors.


Journal of Natural Products | 2008

Xanthones from the botanical dietary supplement mangosteen (Garcinia mangostana) with aromatase inhibitory activity.

Marcy J. Balunas; Bin Su; Robert W. Brueggemeier; A. Douglas Kinghorn

Twelve xanthone constituents of the botanical dietary supplement mangosteen (the pericarp of Garcinia mangostana) were screened using a noncellular, enzyme-based microsomal aromatase inhibition assay. Of these compounds, garcinone D (3), garcinone E (5), alpha-mangostin (8), and gamma-mangostin (9) exhibited dose-dependent inhibitory activity. In a follow-up cell-based assay using SK-BR-3 breast cancer cells that express high levels of aromatase, the most potent of these four xanthones was gamma-mangostin (9). Because xanthones may be consumed in substantial amounts from commercially available mangosteen products, the consequences of frequent intake of mangosteen botanical dietary supplements require further investigation to determine their possible role in breast cancer chemoprevention.


The Journal of Steroid Biochemistry and Molecular Biology | 2001

2-Methoxymethylestradiol: a new 2-methoxy estrogen analog that exhibits antiproliferative activity and alters tubulin dynamics.

Robert W. Brueggemeier; Abhijit S. Bhat; Carl J. Lovely; Holly D. Coughenour; Surachai Joomprabutra; Douglas H. Weitzel; Dale D. Vandré; Fouza Yusuf; William E. Burak

An estradiol metabolite, 2-methoxyestradiol (2-MeOE(2)), has shown antiproliferative effects in both hormone-dependent and hormone-independent breast cancer cells. Previously, a series of 2-hydroxyalkyl estradiol analogs had been synthesized in our laboratories as potential probes for comparison of estrogen receptor (ER)-mediated versus non-ER-mediated effects in breast cancer cells. A methoxy derivative of 2-hydroxymethyl estradiol was prepared for biological evaluation and comparison with 2-MeOE(2). Estrogenic activity of the synthetic analogs was evaluated in two ways, one by examining affinity of the analogs for the estrogen receptor in MCF-7 cells and the other by examining the ability of the analogs to induce estrogen-responsive gene expression. The analog, 2-methoxymethyl estradiol (2-MeOMeE(2)), demonstrated weak affinity for the estrogen receptor (0.9% of estradiol) and weak ability to stimulate estrogen-induced expression of the pS2 gene (0.02% of estradiol). Antitumor activity was evaluated both in vitro and in vivo. The steroidal nucleus seems to be an attractive target for developing novel tubulin polymerization inhibitors. Additionally, such steroidal compounds may have low toxicity compared to the natural products known to interact with tubulin. Interestingly, 2-MeOMeE(2) inhibited tubulin polymerization in vitro at concentrations of 1 and 3 microM and was more effective than 2-MeOE(2). In cells, 2-MeOMeE(2) was effective in suppressing growth and inducing cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells. The cytotoxic effects of 2-MeOMeE(2) are associated with alterations in tubulin dynamics, with the frequent appearance of misaligned chromosomes, a significant mitotic delay, and the formation of multinucleated cells. In comparison, 2-MeOE(2) was more effective than 2-MeOMeE(2) in producing cytotoxicity and altering tubulin dynamics in intact cells. Assessment of in vivo antitumor activity was performed in athymic mice containing human breast tumor xenografts. Nude mice bearing MDA-MB-435 tumor xenografts were treated i.p. with 50 mg/kg per day of 2-MeOMeE(2) or vehicle control for 45 days. Treatment with 2-MeOMeE(2) resulted in an approximate 50% reduction in mean tumor volume at treatment day 45 when compared to control animals and had no effect on animal weight. Thus, 2-MeOMeE(2) is an estrogen analog with minimal estrogenic properties that demonstrates antiproliferative effects both in vitro and in the human xenograft animal model of human breast cancer.


Anti-cancer Agents in Medicinal Chemistry | 2008

Natural products as aromatase inhibitors

Marcy J. Balunas; Bin Su; Robert W. Brueggemeier; A. Douglas Kinghorn

With the clinical success of several synthetic aromatase inhibitors (AIs) in the treatment of postmenopausal estrogen receptor-positive breast cancer, researchers have also been investigating the potential of natural products as AIs. Natural products from terrestrial and marine organisms provide a chemically diverse array of compounds not always available through current synthetic chemistry techniques. Natural products that have been used traditionally for nutritional or medicinal purposes (e.g., botanical dietary supplements) may also afford AIs with reduced side effects. A thorough review of the literature regarding natural product extracts and secondary metabolites of plant, microbial, and marine origin that have been shown to exhibit aromatase inhibitory activity is presented herein.


The Journal of Steroid Biochemistry and Molecular Biology | 2003

Aromatase and cyclooxygenases: enzymes in breast cancer.

Robert W. Brueggemeier; Jeanette A. Richards; Trevor A. Petrel

Aromatase (estrogen synthase) is the cytochrome P450 enzyme complex that converts C19 androgens to C18 estrogens. Aromatase activity has been demonstrated in breast tissue in vitro, and expression of aromatase is highest in or near breast tumor sites. Thus, local regulation of aromatase by both endogenous factors as well as exogenous medicinal agents will influence the levels of estrogen available for breast cancer growth. The prostaglandin PGE2 increases intracellular cAMP levels and stimulates estrogen biosynthesis, and previous studies in our laboratories have shown a strong linear association between aromatase (CYP19) expression and expression of the cyclooxygenases (COX-1 and COX-2) in breast cancer specimens. To further investigate the pathways regulating COX and CYP19 gene expression, studies were performed in normal breast stromal cells, in breast cancer cells from patients, and in breast cancer cell lines using selective pharmacological agents. Enhanced COX enzyme levels results in increased production of prostaglandins, such as PGE2. This prostaglandin increased aromatase activity in breast stromal cells, and studies with selective agonists and antagonists showed that this regulation of signaling pathways occurs through the EP1 and EP2 receptor subtypes. COX-2 gene expression was enhanced in breast cancer cell lines by ligands for the various peroxisome proliferator-activated receptors (PPARs), and differential regulation was observed between hormone-dependent and -independent breast cancer cells. Thus, the regulation of both enzymes in breast cancer involves complex paracrine interactions, resulting in significant consequences on the pathogenesis of breast cancer.

Collaboration


Dive into the Robert W. Brueggemeier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Su

Cleveland State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl J. Lovely

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge