Purushottam Dokhale
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Purushottam Dokhale.
Physics in Medicine and Biology | 2006
Yongfeng Yang; Purushottam Dokhale; Robert W. Silverman; K.S. Shah; Mickel McClish; Richard Farrell; G. Entine; Simon R. Cherry
We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is approximately 2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach.
The Journal of Nuclear Medicine | 2008
Yongfeng Yang; Yibao Wu; Jinyi Qi; Sara St. James; Huini Du; Purushottam Dokhale; K.S. Shah; Richard Farrell; Simon R. Cherry
Detectors with depth-encoding allow a PET scanner to simultaneously achieve high sensitivity and high spatial resolution. Methods: A prototype PET scanner, consisting of depth-encoding detectors constructed by dual-ended readout of lutetium oxyorthosilicate (LSO) arrays with 2 position-sensitive avalanche photodiodes (PSAPDs), was developed. The scanner comprised 2 detector plates, each with 4 detector modules, and the LSO arrays consisted of 7 × 7 elements, with a crystal size of 0.9225 × 0.9225 × 20 mm and a pitch of 1.0 mm. The active area of the PSAPDs was 8 × 8 mm. The performance of individual detector modules was characterized. A line-source phantom and a hot-rod phantom were imaged on the prototype scanner in 2 different scanner configurations. The images were reconstructed using 20, 10, 5, 2, and 1 depth-of-interaction (DOI) bins to demonstrate the effects of DOI resolution on reconstructed image resolution and visual image quality. Results: The flood histograms measured from the sum of both PSAPD signals were only weakly depth-dependent, and excellent crystal identification was obtained at all depths. The flood histograms improved as the detector temperature decreased. DOI resolution and energy resolution improved significantly as the temperature decreased from 20°C to 10°C but improved only slightly with a subsequent temperature decrease to 0°C. A full width at half maximum (FWHM) DOI resolution of 2 mm and an FWHM energy resolution of 15% were obtained at a temperature of 10°C. Phantom studies showed that DOI measurements significantly improved the reconstructed image resolution. In the first scanner configuration (parallel detector planes), the image resolution at the center of the field of view was 0.9-mm FWHM with 20 DOI bins and 1.6-mm FWHM with 1 DOI bin. In the second scanner configuration (detector planes at a 40° angle), the image resolution at the center of the field of view was 1.0-mm FWHM with 20 DOI bins and was not measurable when using only 1 bin. Conclusion: PET scanners based on this detector design offer the prospect of high and uniform spatial resolution (crystal size, ∼1 mm; DOI resolution, ∼2 mm), high sensitivity (20-mm-thick detectors), and compact size (DOI encoding permits detectors to be tightly packed around the subject and minimizes number of detectors needed).
ieee nuclear science symposium | 2002
Kanai S. Shah; Ronald Grazioso; Richard Farrell; Jarek Glodo; Mickel McClish; Gerald Entine; Purushottam Dokhale; Simon R. Cherry
In this paper, investigation of position sensitive avalanche photodiodes (PSAPDs) as optical detectors for reading out segmented scintillation arrays of LSO in high resolution PET modules is reported. PSAPDs with 8/spl times/8 mm/sup 2/ and 14/spl times/14 mm/sup 2/ area have been characterized with single LSO crystals and arrays. Energy resolution of 19% (FWHM) for 511 keV /spl gamma/-rays and coincidence timing resolution of /spl sim/3 ns (FWHM) have been recorded with PSAPD coupled to 1/spl times/1/spl times/20 mm/sup 3/ LSO detectors. Flood histogram studies have been successfully conducted by coupling multi-element element LSO arrays (1 mm pixels, 20 mm tall) to the PSAPDs. Finally, depth of interaction (DOI) resolution of <4.5 mm (FWHM) has been measured by coupling two PSAPDs on opposite ends of a 20 mm long LSO crystal with a 1/spl times/1 mm/sup 2/ cross section. Based on these results, PSAPDs appear to be promising for high resolution PET. An important advantage of these PSAPDs is significant reduction in electronic readout requirements.
Physics in Medicine and Biology | 2004
Purushottam Dokhale; Robert W. Silverman; K.S. Shah; Ronald Grazioso; Richard Farrell; Jarek Glodo; Mickel McClish; G. Entine; V.-H. Tran; Simon R. Cherry
We are developing a high-resolution, high-efficiency positron emission tomography (PET) detector module with depth of interaction (DOI) capability based on a lutetium oxyorthosilicate (LSO) scintillator array coupled at both ends to position-sensitive avalanche photodiodes (PSAPDs). In this paper we present the DOI resolution, energy resolution and timing resolution results for complete detector modules. The detector module consists of a 7 x 7 matrix of LSO scintillator crystals (1 x 1 x 20 mm3 in dimension) coupled to 8 x 8 mm2 PSAPDs at both ends. Flood histograms were acquired and used to generate crystal look-up tables. The DOI resolution was measured for individual crystals within the array by using the ratio of the signal amplitudes from the two PSAPDs on an event-by-event basis. A measure of the total scintillation light produced was obtained by summing the signal amplitudes from the two PSAPDs. This summed signal was used to measure the energy resolution. The DOI resolution was measured to be 3-4 mm FWHM irrespective of the position of the crystal within the array, or the interaction location along the length of the crystal. The total light signal and energy resolution was almost independent of the depth of interaction. The measured energy resolution averaged 14% FWHM. The coincidence timing resolution measured using a pair of identical detector modules was 4.5 ns FWHM. These results are consistent with the design goals and the performance required of a compact, high-resolution and high-efficiency PET detector module for small animal and breast imaging applications.
Physics in Medicine and Biology | 2009
Sara St. James; Yongfeng Yang; Yibao Wu; Richard Farrell; Purushottam Dokhale; K.S. Shah; Simon R. Cherry
Small animal PET scanners may be improved by increasing the sensitivity, improving the spatial resolution and improving the uniformity of the spatial resolution across the field of view. This may be achieved by using PET detectors based on crystal elements that are thin in the axial and transaxial directions and long in the radial direction, and by employing depth of interaction (DOI) encoding to minimize the parallax error. With DOI detectors, the diameter of the ring of the PET scanner may also be decreased. This minimizes the number of detectors required to achieve the same solid angle coverage as a scanner with a larger ring diameter and minimizes errors due to non-collinearity of the annihilation photons. In this study, we characterize prototype PET detectors that are finely pixelated with individual LSO crystal element sizes of 0.5 mm x 0.5 mm x 20 mm and 0.7 mm x 0.7 mm x 20 mm, read out at both ends by position sensitive avalanche photodiodes (PSAPDs). Both a specular reflector and a diffuse reflector were evaluated. The detectors were characterized based on the ability to clearly resolve the individual crystal elements, the DOI resolution and the energy resolution. Our results indicate that a scanner based on any of the four detector designs would offer improved spatial resolution and more uniform spatial resolution compared to present day small animal PET scanners. The greatest improvements to spatial resolution will be achieved when the detectors employing the 0.5 mm x 0.5 mm x 20 mm crystals are used. Monte Carlo simulations were performed to demonstrate that 2 mm DOI resolution is adequate to ensure uniform spatial resolution for a small animal PET scanner geometry using these detectors. The sensitivity of such a scanner was also simulated using Monte Carlo simulations and was shown to be greater than 10% for a four ring scanner with an inner diameter of 6 cm, employing 20 detectors per scanner ring.
Physics in Medicine and Biology | 2009
Yongfeng Yang; Jinyi Qi; Yibao Wu; Sara St. James; Richard Farrell; Purushottam Dokhale; K.S. Shah; Simon R. Cherry
Many laboratories develop depth-encoding detectors to improve the trade-off between spatial resolution and sensitivity in positron emission tomography (PET) scanners. One challenge in implementing these detectors is the need to calibrate the depth of interaction (DOI) response for the large numbers of detector elements in a scanner. In this work, we evaluate two different methods, a linear detector calibration and a linear crystal calibration, for determining DOI calibration parameters. Both methods can use measurements from any source distribution and location, or even the intrinsic lutetium oxyorthosilicate (LSO) background activity, and are therefore well suited for use in a depth-encoding PET scanner. The methods were evaluated by measuring detector and crystal DOI responses for all eight detectors in a prototype depth-encoding PET scanner. The detectors utilize dual-ended readout of LSO scintillator arrays with position-sensitive avalanche photodiodes (PSAPDs). The LSO arrays have 7 x 7 elements, with a crystal size of 0.92 x 0.92 x 20 mm(3) and pitch of 1.0 mm. The arrays are read out by two 8 x 8 mm(2) area PSAPDs placed at opposite ends of the arrays. DOI is measured by the ratio of the amplitude of the total energy signals measured by the two PSAPDs. Small variations were observed in the DOI responses of different crystals within an array as well as DOI responses for different arrays. A slightly nonlinear dependence of the DOI ratio on depth was observed and the nonlinearity was larger for the corner and edge crystals. The DOI calibration parameters were obtained from the DOI responses measured in a singles mode. The average error between the calibrated DOI and the known DOI was 0.8 mm if a linear detector DOI calibration was used and 0.5 mm if a linear crystal DOI calibration was used. A line source phantom and a hot rod phantom were scanned on the prototype PET scanner. DOI measurement significantly improved the image spatial resolution no matter which DOI calibration method was used. A linear crystal DOI calibration provided slightly better image spatial resolution compared with a linear detector DOI calibration.
IEEE Transactions on Nuclear Science | 2009
Yibao Wu; Ciprian Catana; Richard Farrell; Purushottam Dokhale; K.S. Shah; Jinyi Qi; Simon R. Cherry
A magnetic resonance (MR) compatible positron emission tomography (PET) insert has been developed in our laboratory for simultaneous small animal PET/MR imaging. This system is based on lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiode (PSAPD) photodetectors. The PET performance of this insert has been measured. The average reconstructed image spatial resolution was 1.51 mm. The sensitivity at the center of the field of view (CFOV) was 0.35%, which is comparable to the simulation predictions of 0.40%. The average photopeak energy resolution was 25%. The scatter fraction inside the MRI scanner with a line source was 12% (with a mouse-sized phantom and standard 35 mm Bruker 1 H RF coil), 7% (with RF coil only) and 5% (without phantom or RF coil) for an energy window of 350-650 keV. The front-end electronics had a dead time of 390 ns, and a trigger extension dead time of 7.32 mus that degraded counting rate performance for injected doses above ~0.75 mCi (28 MBq). The peak noise-equivalent count rate (NECR) of 1.27 kcps was achieved at 290 muCi (10.7 MBq). The system showed good imaging performance inside a 7-T animal MRI system; however improvements in data acquisition electronics and reduction of the coincidence timing window are needed to realize improved NECR performance.
IEEE Transactions on Nuclear Science | 2010
Mickel McClish; Purushottam Dokhale; James F. Christian; Christopher J. Stapels; Erik D. Johnson; Rob Robertson; Kanai S. Shah
We have designed position sensitive solid-state photomultipliers (PS-SSPM) using a complementary metal-oxide-semiconductor (CMOS) process. Four variations of the PS-SSPM design were fabricated, however, one of the variations did not function properly. The remaining three functional variations were characterized for their energy and coincidence timing resolution, spatial resolution, and scintillator array imaging. Each PS-SSPM is 1.5 × 1.5 mm2, however, each device has different micro-pixel geometries and different micro-pixel electrical readout for event position sensing. When coupled to 1 × 1 × 20 mm3 LYSO, the energy resolution at 511 keV was measured as a function of bias. The same LYSO scintillator was used to measure the coincidence timing resolution. Results between the PS-SSPMs varied from 2.0 ns to 0.9 ns (FWHM) at 511 keV. Spatial resolution studies were conducted using a focused (15 μm beam spot diameter) pulsed 635 nm diode laser. For each PS-SSPM, the X and Y spatial resolution was measured between 70 and 75 μm (FWHM). Lastly, scintillator array images were generated using a CsI:Tl and LYSO array having 300 × 300 μm2 and 500 × 500 μm2 pixels respectively.
IEEE Transactions on Nuclear Science | 2008
Gregory S. Mitchell; Shrabani Sinha; Jennifer R. Stickel; Spencer L. Bowen; Leonard J. Cirignano; Purushottam Dokhale; Hadong Kim; K.S. Shah; Simon R. Cherry
Excellent spatial resolution is a requirement for preclinical PET imaging. In order to achieve spatial resolution of significantly better than one millimeter, an appealing possibility is to employ direct detector materials, such as cadmium telluride (CdTe). Prototype thin orthogonal strip detectors have been developed for testing. They have dimensions of 20 mm by 20 mm and are 0.5 mm thick, and have strips of 0.5 mm pitch on one side and 2.5 mm pitch on the other. Results are presented for the energy resolution (3% at 511 keV), intrinsic position resolution (equal to the 0.5 mm strip pitch), and timing resolution (3 ns FWHM in coincidence with an LSO detector, 8 ns FWHM for coincidence of two CdTe detectors) of the detectors. A PET scanner design is proposed using blocks made of the CdTe strip detectors, oriented in the blocks with their thin edges toward the center of the scanner. Simulation results suggest that this scanner, using a threshold of 250 keV, would have a sensitivity of 3.4% for a point source at its center.
Physics in Medicine and Biology | 2011
Yongfeng Yang; Sara St. James; Yibao Wu; Huini Du; Jinyi Qi; Richard Farrell; Purushottam Dokhale; Kanai S. Shah; Keith Vaigneur; Simon R. Cherry
By using detectors with good depth encoding accuracy (∼2 mm), an animal PET scanner can be built with a small ring diameter and thick crystals to simultaneously obtain high spatial resolution and high sensitivity. However, there will be large wedge-shaped gaps between detector modules in such a scanner if traditional cuboid crystal arrays are used in a polygonal arrangement. The gaps can be minimized by using tapered scintillator arrays enabling the sensitivity of the scanner to be further improved. In this work, tapered lutetium oxyorthosilicate (LSO) arrays with different crystal dimensions and different combinations of inter-crystal reflector and crystal surface treatments were manufactured and their performance was evaluated. Arrays were read out from both ends by position-sensitive avalanche photodiodes (PSAPDs). In the optimal configuration, arrays consisting of 0.5 mm LSO elements could be clearly resolved and a depth of interaction resolution of 2.6 mm was obtained for a 20 mm thick array. For this tapered array, the intrinsic spatial is degraded from 0.67 to 0.75 mm compared to a standard cuboidal array with similar dimensions, while the increase in efficiency is 41%. Tapered scintillator arrays offer the prospect of improvements in sensitivity and sampling for small-bore scanners, without large increases in manufacturing complexity.