Purushottam R. Lomate
Council of Scientific and Industrial Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Purushottam R. Lomate.
Journal of Proteome Research | 2013
Vishal V. Dawkar; Yojana R. Chikate; Purushottam R. Lomate; Bhushan B. Dholakia; Vidya S. Gupta; Ashok P. Giri
Insect pests remain a major reason for crop loss worldwide despite extensive use of chemical insecticides. More than 50% of all insecticides are organophosphates, followed by synthetic pyrethroids, organochlorines, carbamates, and biopesticides, and their continued use may have many environmental, agricultural, medical, and socioeconomic issues. Importantly, only a countable number of insects have acquired the status of crop pests, mostly due to monoculture of crop plants and polyphagous nature of the insects. We focus on adaptations of Lepidopteran insects to phytochemicals and synthetic pesticides in native and modern agricultural systems. Because of heavy use of chemical insecticides, a strong selection pressure is imposed on insect populations, resulting in the emergence of resistance against candidate compound(s). Current knowledge suggests that insects generally implement a three-tier system to overcome the effect of toxic compounds at physiological, biochemical, and genetic levels. Furthermore, we have discussed whether the adaptation to phytochemicals provides an advantage to the insect while encountering synthetic insecticide molecules. Specific metabolic pathways employed by insects to convert deterrents into less toxic forms or their removal from the system are highlighted. Using the proteomics approach, insect proteins interacting with insecticides can be identified, and their modification in resistant insects can be characterized. Also, systems biology studies can offer useful cues to decipher the molecular networks participating in the metabolism of detrimental compounds.
PLOS ONE | 2013
Purushottam R. Lomate; Bhakti R. Jadhav; Ashok P. Giri; Vandana K. Hivrale
Jasmonate inducible plant leucine aminopeptidase (LAP) is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae) and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.
Scientific Reports | 2016
Purushottam R. Lomate; Bryony C. Bonning
Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest.
Planta | 2015
Manasi Mishra; Purushottam R. Lomate; Rakesh S. Joshi; Sachin A. Punekar; Vidya S. Gupta; Ashok P. Giri
AbstractMain conclusionAvailable history manifests contemporary diversity that exists in plant-insect interactions. A radical thinking is necessary for developing strategies that can co-opt natural insect-plant mutualism, ecology and environmental safety for crop protection since current agricultural practices can reduce species richness and evenness. The global environmental changes, such as increased temperature, CO2and ozone levels, biological invasions, land-use change and habitat fragmentation together play a significant role in re-shaping the plant-insect multi-trophic interactions. Diverse natural products need to be studied and explored for their biological functions as insect pest control agents. In order to assure the success of an integrated pest management strategy, human activities need to be harmonized to minimize the global climate changes. Plant–insect interaction is one of the most primitive and co-evolved associations, often influenced by surrounding changes. In this review, we account the persistence and evolution of plant–insect interactions, with particular focus on the effect of climate change and human interference on these interactions. Plants and insects have been maintaining their existence through a mutual service-resource relationship while defending themselves. We provide a comprehensive catalog of various defense strategies employed by the plants and/or insects. Furthermore, several important factors such as accelerated diversification, imbalance in the mutualism, and chemical arms race between plants and insects as indirect consequences of human practices are highlighted. Inappropriate implementation of several modern agricultural practices has resulted in (i) endangered mutualisms, (ii) pest status and resistance in insects and (iii) ecological instability. Moreover, altered environmental conditions eventually triggered the resetting of plant–insect interactions. Hence, multitrophic approaches that can harmonize human activities and minimize their interference in native plant–insect interactions are needed to maintain natural balance between the existence of plants and insects.
Insect Biochemistry and Molecular Biology | 2014
Purushottam R. Lomate; Neha S. Mahajan; Sandip M. Kale; Vidya S. Gupta; Ashok P. Giri
The present investigation is an effort to determine the possible roles of microRNAs (miRNAs) in the regulation of protease gene expression in Helicoverpa armigera upon exposure to plant protease inhibitors (PIs). Using Illumina platform, deep sequencing of 12 small RNA libraries was performed from H. armigera larvae fed on artificial diet (AD) or recombinant Capsicum annuum PI-7 (rCanPI-7) incorporated diet, at various time intervals (0.5, 2, 6, 12, 24, and 48 h). Sequencing data were analyzed with miRDeep2 software; a total of 186 unique miRNAs were identified from all the 12 libraries, out of which 96 were conserved while 90 were novel. These miRNAs showed all the conserved characteristics of insect miRNAs. Homology analysis revealed that most of the identified miRNAs were insect-specific, and more than 50 miRNAs were Lepidoptera-specific. Several candidate miRNAs (conserved and novel) were differentially expressed in rCanPI-7 fed larvae as compared to the larvae fed on AD. H. armigera miRNAs were found to have target sites in several protease genes as well as in protease regulation related genes such as serine PI and immune reactive PI. As expected, negative correlation in the relative abundance of miRNAs and their target mRNAs was evident from qualitative real time polymerase chain reaction analysis. The investigation revealed potential roles of miRNAs in H. armigera protease gene regulation.
Arthropod-plant Interactions | 2013
Vandana K. Hivrale; Purushottam R. Lomate; Shriniwas S. Basaiyye; Neeta D. Kalve
Plant proteinase inhibitors (PIs) have been shown to reduce the growth rates in larvae of numerous insect species. On the other hand, insects can also regulate their proteinases against plant PIs. In the present study, we report the compensatory activities of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) gut proteinases against the PIs of Albizia lebbeck seeds. Total of ten proteinase inhibitor bands were detected in the seed extract of A. lebbeck. Bioassays were conducted by feeding H. armigera larvae on diet containing partially purified PIs from A. lebbeck seeds. Results show that larval growth and survival was significantly reduced by A. lebbeck PIs. We found that higher activity H. armigera gut proteinase (HGP) isoforms observed in the midgut of control larvae were inhibited in the midgut of larvae fed on test diet. Some HGP isoforms were induced in the larvae fed on PI containing test diet; however, these isoforms showed lower activity in the larvae fed on control diet. Aminopeptidase activities were significantly increased in the midgut of larvae fed on test diet. A population of susceptible and resistant enzymes was observed in the midgut of H. armigera, when fed on diet containing PIs from A. lebbeck seeds. Our initial observations indicate that H. armigera can regulate its digestive proteinase activity against non-host plant PIs, too. It is important to study the exact biochemical and molecular mechanisms underlying this phenomenon in order to develop PI-based insect control strategies.
Open Access Insect Physiology | 2015
Purushottam R. Lomate; Kirti P Sangole; Ramanjulu Sunkar; Vandana Hivrale
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php Open Access Insect Physiology 2015:5 13–20 Open Access Insect Physiology Dovepress
Archives of Insect Biochemistry and Physiology | 2018
Purushottam R. Lomate; Bryony C. Bonning
Management of the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), an invasive, agricultural pest in the United States, has presented significant challenges. This polyphagous insect uses both extra-oral and gut-based digestion thwarting protein- or nucleotide-based control strategies. The objective of this study was to biochemically characterize the digestive enzymes (proteases and nucleases) from the saliva, salivary gland and the gut of H. halys. Enzyme profiles for the two tissues and saliva radically differ: The pH optimum for proteases in the gut was six, with cysteine proteases predominant. In contrast, the alkaline pH optima for protease activity in the salivary gland (8-10) and saliva (7) reflected abundant serine protease and cathepsin activities. RNase enzymes were most abundant in saliva, while dsRNase and DNase activities were higher in the salivary gland and saliva compared to those in the gut. These very different enzyme profiles highlight the biphasic digestive system used by this invasive species for efficient processing of plant nutrients. Knowledge of H. halys digestive physiology will allow for counteractive measures targeting digestive enzymes or for appropriate protection of protein- or nucleotide-based management options targeting this pest.
Insect Biochemistry and Molecular Biology | 2018
Sijun Liu; Purushottam R. Lomate; Bryony C. Bonning
The phytophagous stink bug, Nezara viridula (L.) infests multiple plant species and impacts agricultural production worldwide. We analyzed the transcriptomes of N. viridula accessory salivary gland (ASG), principal salivary gland (PSG) and gut, with a focus on putative digestive proteases and nucleases that present a primary obstacle for the stability of protein- or nucleic acid-based stink bug control approaches. We performed high throughput Illumina sequencing followed by de novo transcriptome assemblies. We identified the sequences of 141 unique proteases and 134 nucleases from the N. viridula transcriptomes. Analysis of relative transcript abundance in conjunction with previously reported proteome data (Lomate and Bonning, 2016) supports high levels of serine protease expression in the salivary glands and high cysteine protease expression in the gut. Specifically, trypsin and chymotrypsin transcripts were abundant in the PSG, and cathepsin L-like cysteine protease transcripts were abundant in the gut. Nuclease transcript levels were generally lower than those of the proteases, the exception being abundant transcripts of ribonuclease-C20 in the PSG. The abundance of chymotrypsin, trypsin, and some carboxypeptidase transcripts suggests a significant role for the PSG in production of digestive enzymes. This result is at odds with the premise that the ASG produces watery saliva, which is high in enzymatic activity, while the PSG produces only sheath saliva. We have generated a comprehensive transcriptome sequence dataset from the digestive organs of N. viridula, identified major protease and nuclease genes and confirmed expression of the most abundant enzymes thereby providing greater insight into the digestive physiology of N. viridula.
BMC Biochemistry | 2013
Prashant T. Sanatan; Purushottam R. Lomate; Ashok P. Giri; Vandana K. Hivrale