Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Q. Zebeli is active.

Publication


Featured researches published by Q. Zebeli.


Journal of Dairy Science | 2008

Modeling the Adequacy of Dietary Fiber in Dairy Cows Based on the Responses of Ruminal pH and Milk Fat Production to Composition of the Diet

Q. Zebeli; J. Dijkstra; M. Tafaj; H. Steingass; Burim N. Ametaj; W. Drochner

The main objective of this study was to develop practical models to assess and predict the adequacy of dietary fiber in high-yielding dairy cows. We used quantitative methods to analyze relevant research data and critically evaluate and determine the responses of ruminal pH and production performance to different variables including physical, chemical, and starch-degrading characteristics of the diet. Further, extensive data were used to model the magnitude of ruminal pH fluctuations and determine the threshold for the development of subacute ruminal acidosis (SARA). Results of this study showed that to minimize the risk of SARA, the following events should be avoided: 1) a daily mean ruminal pH lower than 6.16, and 2) a time period in which ruminal pH is <5.8 for more than 5.24 h/d. As the content of physically effective neutral detergent fiber (peNDF) or the ratio between peNDF and rumen-degradable starch from grains in the diet increased up to 31.2 +/- 1.6% [dry matter (DM) basis] or 1.45 +/- 0.22, respectively, so did the daily mean ruminal pH, for which a asymptotic plateau was reached at a pH of 6.20 to 6.27. This study also showed that digestibility of fiber in the total tract depends on ruminal pH and outflow rate of digesta from reticulorumen; thereby both variables explained 62% of the variation of fiber digestibility. Feeding diets with peNDF content up to 31.9 +/- 1.97% (DM basis) slightly decreased DM intake and actual milk yield; however, 3.5% fat-corrected milk and milk fat yield were increased, resulting in greater milk energy efficiency. In conclusion, a level of about 30 to 33% peNDF in the diet may be considered generally optimal for minimizing the risk of SARA without impairing important production responses in high-yielding dairy cows. In terms of improvement of the accuracy to assessing dietary fiber adequacy, it is suggested that the content of peNDF required to stabilize ruminal pH and maintain milk fat content without compromising milk energy efficiency can be arranged based on grain or starch sources included in the diet, on feed intake level, and on days in milk of the cows.


Journal of Dairy Science | 2012

Invited review: Role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle

Q. Zebeli; Jörg R. Aschenbach; M. Tafaj; J. Boguhn; Burim N. Ametaj; W. Drochner

Highly fermentable diets require the inclusion of adequate amounts of fiber to reduce the risk of subacute rumen acidosis (SARA). To assess the adequacy of dietary fiber in dairy cattle, the concept of physically effective neutral detergent fiber (peNDF) has received increasing attention because it amalgamates information on both chemical fiber content and particle size (PS) of the feedstuffs. The nutritional effects of dietary PS and peNDF are complex and involve feed intake behavior (absolute intake and sorting behavior), ruminal mat formation, rumination and salivation, and ruminal motility. Other effects include fermentation characteristics, digesta passage, and nutrient intake and absorption. Moreover, peNDF requirements depend on the fermentability of the starch source (i.e., starch type and endosperm structure). To date, the incomplete understanding of these complex interactions has prevented the establishment of peNDF as a routine method to determine dietary fiber adequacy so far. Therefore, this review is intended to analyze the quantitative effects of and interactions among forage PS, peNDF, and diet fermentability with regard to rumen metabolism and prevention of SARA, and aims to give an overview of the latest achievements in the estimation of dietary fiber adequacy in high-producing dairy cattle. Recently developed models that synthesize the effects of both peNDF and fermentable starch on rumen metabolism appear to provide an appropriate basis for estimation of dietary fiber adequacy in high-producing dairy cows. Data suggest that a period lasting more than 5 to 6h/d during which ruminal pH is <5.8 should be avoided to minimize health disturbances due to SARA. The knowledge generated from these modeling approaches recommends that average amounts of 31.2% peNDF inclusive particles >1.18mm (i.e., peNDF(>1.18)) or 18.5% peNDF inclusive particles >8mm (i.e., peNDF(>8)) in the diet (DM basis) are required. However, inclusion of a concentration of peNDF(>8) in the diet beyond 14.9% of diet DM may lower DM intake level. As such, more research is warranted to develop efficient feeding strategies that encourage inclusion of energy-dense diets without the need to increase their content in peNDF above the threshold that leads to lower DM intake. The latter would require strategies that modulate the fermentability characteristics of the diet and promote absorption and metabolic capacity of ruminal epithelia of dairy cows.


Metabolomics | 2010

Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows

Burim N. Ametaj; Q. Zebeli; Fozia Saleem; Nikolaos Psychogios; Michael J. Lewis; Suzanna M. Dunn; Jianguo Xia; David S. Wishart

This study presents the first application of metabolomics to evaluate changes in rumen metabolites of dairy cows fed increasing proportions of barley grain (i.e., 0, 15, 30, and 45% of diet dry matter). 1H-NMR spectroscopy was used to analyze rumen fluid samples representing 4 different diets. Results showed that for cows fed 30 and 45% grain, increases were observed in the concentration of rumen methylamine as well as glucose, alanine, maltose, propionate, uracil, valerate, xanthine, ethanol, and phenylacetate. These studies also revealed lower rumen 3-phenylpropionate in cows fed greater amounts of cereal grain. Furthermore, ANOVA tests showed noteworthy increases in rumen concentrations of N-nitrosodimethylamine, dimethylamine, lysine, leucine, phenylacetylglycine, nicotinate, glycerol, fumarate, butyrate, and valine with an enriched grain diet. Using principal component analysis it was also found that each of the 4 diets could be distinguished on the basis of the measured rumen metabolites. The two closest clusters corresponded to the 0 and 15% grain diets, whereas the 45% barley grain diet was significantly separated from the other clusters. Unhealthly levels of a number of potentially toxic metabolites were found in the rumen of cattle fed 30 and 45% grain diets. These results may have a number of implications regarding the influence of grain on the overall health of dairy cows.


Journal of Dairy Science | 2009

Relationships between rumen lipopolysaccharide and mediators of inflammatory response with milk fat production and efficiency in dairy cows

Q. Zebeli; Burim N. Ametaj

The main objective of this study was to evaluate correlative relationships between rumen lipopolysaccharide (LPS) and mediators of acute phase response with milk fat yield and efficiency in dairy cows challenged with graded amounts of barley grain in the diet. An additional aim of the study was to quantify the intercow variation in relation to milk fat production and acute phase response in cows fed graded amounts of grain. Eight primiparous, lactating Holstein cows (60 d in milk) were assigned to 1 of the 4 total mixed rations containing barley grain at 0, 15, 30, and 45% (dry matter basis) in a replicated 4 x 4 Latin square design. Free rumen LPS, plasma acute phase proteins, and milk fat content were quantified in multiple samples collected on d 5 and 7 of the measurement periods shortly before the morning feeding. Results showed markedly greater concentrations of rumen LPS with increasing dietary grain level. The correlative analysis revealed strong negative relationships between rumen LPS and milk fat content and yield. The predictor variable of rumen LPS explained 69% of the variation during the milk fat reduction of the cows. The stronger depression in milk fat percentage was obtained when rumen LPS exceeded a threshold of 5,564 ng/mL, corresponding to a milk fat content of 3.39%. The increase in concentration of rumen LPS was also associated with declines in milk fat yield and 3.5% fat-corrected milk (R(2) = 0.50), as well as milk energy efficiency (R(2) = 0.43). The correlative analysis also indicated that the increase of plasma C-reactive protein (CRP) in response to higher grain feeding was associated with a linear decrease of milk fat content and yield (R(2) = 0.28 to 0.46). Furthermore, the statistical analysis revealed high percentages of intercow variation related to milk fat variables, as well as the responses of rumen LPS and plasma CRP. Taken together, the current results implicate rumen LPS and the host CRP response in the lowering of milk fat content and milk energy efficiency in dairy cows fed high-grain diets. Further research is warranted to understand the mechanism(s) by which rumen LPS and inflammatory responses to LPS lower milk fat synthesis and milk energy efficiency and to develop novel strategies for their prevention.


Research in Veterinary Science | 2012

Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle.

Q. Zebeli; Barbara U. Metzler-Zebeli

In this review, an overview is provided on the current achievements regarding the interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. It starts with a review of factors favoring the disturbances in the rumen metabolism, which culminate with development of sub-acute rumen acidosis (SARA). The latter digestive disorder is often linked to greater metabolic stress of gastrointestinal (GI) microbiota and lowered fiber digestion, as well as with disruption of the barrier functions of the GI epithelia, which open the route of deleterious molecules to translocate from the GI lumen into the portal system. A model is suggested to illustrate the mechanisms of the involvement of digestive disorders in the disruption of the hosts inner homeostasis leading to activation of acute phase response (APR). The latter is part of multifaceted innate immune and metabolic responses of the host. According to this model, endotoxin, its toxicity, and other metabolic compounds of microbial origin are regarded as important immunogenic components of GI tract, which when favored by disruption of host barriers triggers a systemic APR. Although the activation of an APR is viewed as a protective reaction aiming to reestablish the disturbed homeostasis, the presence of inflammatory state over long periods might be associated with negative consequences for the host. The review concludes that prolonged systemic inflammation can: (1) cause significant changes in the energy and lipid metabolism in different body tissues, (2) lead to the development of refractory states associated with immune suppression and increased susceptibility to various diseases, and (3) artificially increase hosts requirements in energy and nutrients, lowering the efficiency of energy and feed use by the animal. The paper emphasizes the critical role that formulation of healthy diets plays for curbing down inflammation and enhancing metabolic health of dairy cows.


Journal of Dairy Science | 2012

A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows

Fozia Saleem; Burim N. Ametaj; Souhaila Bouatra; Rupasri Mandal; Q. Zebeli; Suzanna M. Dunn; David S. Wishart

Dairy cows fed high-grain diets during early lactation have a high incidence of metabolic disorders. However, the precise mechanism(s) of how grain feeding causes disease is not clear. In an effort to understand how this diet transition alters the rumen environment and potentially leads to certain metabolic disorders in dairy cattle, we undertook a comprehensive, quantitative metabolomic analysis of rumen fluid samples from dairy cows fed 4 different diets. Using a combination of proton nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry, and direct flow injection tandem mass spectroscopy, we identified and quantified 93 metabolites in rumen samples taken from 8 dairy cows fed graded amounts of barley grain (i.e., 0, 15, 30, and 45% of diet dry matter). We also studied temporal changes in the rumen by studying metabolite concentration differences between the first day and the last day of each diet phase following the diet adaptation period. Multivariate analysis showed that rumen metabolites arising from the diet containing 45% barley grain were clearly different from those containing 0, 15, and 30% barley grain. Likewise, a clear separation of the metabolic composition of the ruminal fluid was evident at the beginning and at the end of each diet phase-contrary to the belief that 11 d are suitable for the adaptation of cows to high-grain diets. High-grain diets (>30%) resulted in increased rumen fluid concentrations of several toxic, inflammatory, and unnatural compounds including putrescine, methylamines, ethanolamine, and short-chain fatty acids. Perturbations in several amino acids (phenylalanine, ornithine, lysine, leucine, arginine, valine, and phenylacetylglycine) were also evident. The present study confirms and greatly extends earlier observations on dietary effects on rumen fluid composition and shows that the use of multiple metabolomic platforms permits a far more detailed understanding of metabolic causes and effects. These results may improve our understanding of diet-related rumen metabolism and the influence of grain on the overall health of dairy cattle.


Anaerobe | 2013

Grain-rich diets differently alter ruminal and colonic abundance of microbial populations and lipopolysaccharide in goats

Barbara U. Metzler-Zebeli; Stephan Schmitz-Esser; Fenja Klevenhusen; Leopold Podstatzky-Lichtenstein; Martin Wagner; Q. Zebeli

High grain feeding has been associated with ruminal pH depression and microbial dysbiosis in cattle. Yet, the impact of high grain feeding on the caprine rumen and hindgut microbial community and lipopolysaccharide (LPS) release is largely unknown. Therefore, the objective was to investigate the effect of increasing dietary levels of barley grain on the microbial composition and LPS concentrations in the rumen and colon of goats. Effects were compared with respect to the responses of ruminal and colonic pH and short-chain fatty acid (SCFA) generation. Growing goats (n = 5-6) were fed diets containing 0, 30, or 60% coarsely ground barley grain for 6 weeks. Ruminal ciliate protozoa were counted with Bürker counting chamber, and quantitative PCR was used to compare bacterial populations. Increasing dietary grain level linearly increased (P < 0.05) ruminal numbers of entodiniomorphids. With the 60% grain diet, there was a reduction in ruminal abundance of the genus Prevotella and Fibrobacter succinogenes, whereas the ruminal abundance of Lactobacillus spp. increased compared to the 0 and 30% grain diets (P < 0.05). In the colon, abundance of the genus Prevotella and F. succinogenes increased (P < 0.05) in goats fed the 60% grain diet compared to those fed the other diets. Colonic abundance of Clostridium cluster I was related to the presence of grain in the diet. Ruminal LPS concentration decreased (P < 0.05) in response to the 60% grain diet, whereas its colonic concentration increased in response to the same diet (P < 0.05). Present results provide first insight on the adaptive response of rumen protozoa and rumen and colonic bacterial populations to increasing dietary levels of grain in goats. Although luminal pH largely affects microbial populations, fermentable substrate flow to the caprine hindgut may have played a greater role for colonic bacterial populations in the present study.


Revista Brasileira De Zootecnia | 2010

Nutrition, microbiota, and endotoxin-related diseases in dairy cows

Burim N. Ametaj; Q. Zebeli; Summera Iqbal

Neste artigo de revisao e apresentado um resumo total do papel que a dieta de alto teor de graos e baixo teor de forragem tem sobre a composicao da microbiota do rumen e como as mudancas na dieta afetam a liberacao de componentes da parede celular bacteriana toxicos ao hospedeiro. Um destes compostos toxicos e um lipopolisacarideo ou endotoxina, um componente da membrana exterior de todas bacterias gram-negativas. Tambem sao fornecidos dados que apoiam a ideia de que a endotoxina se transloca na circulacao sanguinea e que estas endotoxinas ruminais estao associadas a multiplas perturbacoes das variaveis sanguineas relacionadas a carboidratos, lipidios e metabolismo mineral. Alem disso, endotoxina induz resposta imune geral e nao especifica, denominada resposta aguda de fase. Destaca-se tambem o fato de que dietas de alto teor de grao estao associadas a grupos distintos de metabolitos do plasma e variaveis imunes, sugerindo que a mudanca na proporcao entre graos de cereal e forragem na dieta e muito importante para a saude do gado leiteiro. Fornecemos tambem informacoes que apoiam o conceito de que a endotoxina esta envolvida em multiplas doencas metabolicas, como figado gorduroso, febre do leite, laminitis, placenta retida, abomasum deslocado e sindrome downer cow. Maior numero de pesquisas e necessario para esclarecer os mecanismos pelo qual nutricao, microbiota e endotoxina contribuem para o desenvolvimento de doencas metabolicas. Concluimos que, alem dos agentes causais acima mencionados, outros compostos gerados na area de gastrointestinal, como acido de lipoteicoico ou aminas metiladas, podem estar envolvidos na etiologia de doencas metabolicas.


Journal of Dairy Science | 2009

Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows

Summera Iqbal; Q. Zebeli; A. Mazzolari; G. Bertoni; Suzanna M. Dunn; W.Z. Yang; Burim N. Ametaj

The objectives of the present in vivo and in situ trials were to evaluate whether feeding barley grain steeped in lactic acid (LA) would affect rumen fermentation patterns, in situ dry matter (DM) degradation kinetics, and milk production and composition in lactating dairy cows. The in vivo trial involved 8 rumen-fistulated Holstein cows fed once daily a total mixed ration containing rolled barley grain (27% in DM) steeped for 48 h in an equal quantity of tap water (CTR) or in 0.5% LA (TRT) in a 2 x 2 crossover design. The in situ trials consisted of incubation of untreated rolled barley grain in cows fed CTR or TRT diets and of incubation of 3 different substrates including CTR or barley grain steeped in 0.5% or 1.0% LA (TRT1 and TRT2, respectively) up to 72 h in the rumen. Results of the in vivo trial indicated that cows fed the TRT diet had greater rumen pH during most intensive fermentation phases at 10 and 12 h post-feeding. The latter effect was associated with a shorter duration in which rumen pH was below 5.8 for cows fed the TRT diet (2.4 h) compared with CTR diet (3.9 h). Furthermore, cows fed the TRT diet had lower concentrations of volatile fatty acids at 2 and 4 h post-feeding. In addition, concentrations of preprandial volatile fatty acids were lower in the rumen fluid of cows fed the TRT diet. Results also showed that molar proportion of acetate was lower, whereas propionate tended to increase by feeding cows the TRT diet. Cows fed the TRT diet demonstrated greater rumen in situ lag time of substrate DM degradation and a tendency to lower the fractional degradation rate. Other in situ results indicated a quadratic effect of LA on the effective rumen degradability of substrates whereby the latter variable was decreased from CTR to TRT1 but increased for TRT2 substrate. Although the diet did not affect actual milk yield, fat-corrected milk, percentages of milk protein, and lactose and concentration of milk urea nitrogen, cows fed the TRT diet increased milk fat content and tended to increase fat:protein ratio in the milk. In conclusion, results demonstrated that treatment of barley grain with LA lowered the risk of subacute rumen acidosis and maintained high milk fat content in late-lactating Holstein cows fed diets based on barley grain.


Journal of Applied Toxicology | 2015

Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: poultry and swine

K. Ghareeb; W. A. Awad; J. Böhm; Q. Zebeli

Deoxynivalenol (DON) is one of the most prevalent cereal contaminants with major public health concerns owing to its high toxigenic potentials. Once ingested, DON first and foremost targets epithelial cells of the gastrointestinal tract, whose proper functioning, as the first line of defence, is of paramount importance for the hosts health. Emerging evidences, summarized in this article, suggest that DON produces its toxicity primarily via activation of the mitogen‐activated protein kinases (MAPKs) signalling pathway and alteration in the expression of genes responsible for key physiological and immunological functions of the intestinal tissue of chickens and pigs. The activation of MAPKs signalling cascade results in disruption of the gut barrier function and an increase in the permeability by reducing expression of the tight junction proteins. Exposure to DON also down‐regulates the expression of multiple transporter systems in the enterocytes with subsequent impairment of the absorption of key nutrients. Other major intestinal cytotoxic effects of DON described herein are modulation of mucosal immune responses, leading to immunosupression or stimulation of local immune cells and cytokine release, and also facilitation of the persistence of intestinal pathogens in the gut. Both of the last events potentiate enteric infections and local inflammation in pigs and poultry, rendering enterocytes and the host more vulnerable to luminal toxic compounds. This review highlights the cytotoxic risks associated with the intake of even low levels of DON and also identifies gaps of knowledge that need to be addressed by future research. Copyright

Collaboration


Dive into the Q. Zebeli's collaboration.

Top Co-Authors

Avatar

Barbara U. Metzler-Zebeli

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fenja Klevenhusen

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

R. Khiaosa-ard

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annabella Khol-Parisini

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

W. Drochner

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar

M. Tafaj

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar

P. Pourazad

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Stephan Schmitz-Esser

University of Veterinary Medicine Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge