Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Pourazad is active.

Publication


Featured researches published by P. Pourazad.


Journal of Animal Science | 2016

Transient feeding of a concentrate-rich diet increases the severity of subacute ruminal acidosis in dairy cattle.

P. Pourazad; R. Khiaosa-ard; M. Qumar; Stefanie U. Wetzels; Fenja Klevenhusen; Barbara U. Metzler-Zebeli; Q. Zebeli

The objective of this study was to investigate the effect of the pattern of concentrate-rich feeding on subacute ruminal acidosis (SARA), its severity, and the corresponding changes in VFA concentration. Eight rumen-cannulated Holstein cows were assigned to a 2 × 2 crossover design with 2 SARA challenge models and 2 experimental runs ( = 8 per treatment). Each run lasted for 40 d, consisting of a 6-d baseline, a 6-d gradual grain adaptation, and a 28-d SARA challenge period. The 2 SARA challenge models were transient (TRA) and persistent (PER) SARA. Initially, all cows were subjected to a forage-only diet (baseline) and gradually switched to 60% concentrate (DM basis). Then, cows in the PER model were continuously challenged for 28 d, whereas cows in the TRA model had a 7-d break from the SARA diet and were fed the forage-only diet after the first 7 d of SARA challenge. Thereafter, the TRA cows were rechallenged with the SARA diet. Wireless ruminal pH sensors were used to obtain ruminal pH profiles and temperature over the experimental period. For the determination of VFA, free ruminal liquid (FRL) and particle-associated ruminal liquid (PARL) were collected once for the baseline and twice (d 20 and 40 for the PER model) or 3 times (d 13, 30, and 40 for the TRA model) during SARA, each time at 0, 4, and 8 h after the morning feeding. Cows in both models experienced SARA albeit with day-to-day variation. From the start until the first 7-d SARA, cows of both models had similar pH profiles, but during the rechallenge, SARA was more severe in the TRA model than in the PER model based on lower daily mean ruminal pH (5.93 vs. 6.15; SEM 0.058) and double the amount of time at pH < 5.8 (497 vs. 278 min; SEM 68.61, < 0.05). Mean ruminal temperature was raised during SARA compared with the baseline (38.9 vs. 38.7°C; SEM 0.057, < 0.001). Concentrations of VFA increased with increasing time after feeding ( < 0.001). In general, SARA challenge (d 40 vs. the baseline), but not the challenge model, altered VFA concentrations and profile of both FRL and PARL by increasing the amounts of propionate and butyrate, whereas total VFA concentration was less affected. Proportions of VFA shifted over the duration of SARA challenge with more propionate but less acetate and butyrate proportions with advancing days of SARA challenge, leading to the values of the last SARA day being different from the earlier days ( < 0.05). In conclusion, the TRA condition led to the higher severity of SARA, but factors beyond feed intake and VFA alterations seemed to play a role.


Journal of Animal Science | 2014

Technical note: Evaluation of a real-time wireless pH measurement system relative to intraruminal differences of digesta in dairy cattle

Fenja Klevenhusen; P. Pourazad; Stefanie U. Wetzels; M. Qumar; Annabella Khol-Parisini; Q. Zebeli

The aim of this study was to evaluate the accuracy and precision of indwelled wireless sensors relative to intrareticuloruminal differences in dairy cows transitioned from a forage to a high-concentrate diet. A feeding trial was performed with 8 rumen-cannulated Holstein cows. The cows were stepwise switched from 0 to 60% concentrate in the diet and fed 5 wk. Samples from the free ruminal liquid (FRL) from the ventral rumen and from the particle-associated ruminal liquid (PARL) in the rumen mat were manually taken at 0, 4, and 8 h after the morning feeding on d 0, 7, 14, and 34 of the experiment through the ruminal cannula to measure pH in FRL and PARL using a pH electrode. Additionally indwelling reticular wireless pH sensors were used to measure reticular pH every 10 min throughout the experiment. Precision and accuracy properties as a measure of reproducibility of the methods were statistically evaluated. Data showed significant differences among pH readings of indwelling sensors and pH measurements taken by means of a conventional electrode in both FRL and PARL (P<0.05). These differences became more evident when 60% concentrate diet was fed. Across all experimental days, the pH of the FRL was greatest and the pH reported by indwelling sensors intermediate, whereas the pH of PARL was lowest. The concordance correlation coefficient (CCC) analysis revealed a high agreement between indwelling sensors and FRL (CCC=0.709) but a low agreement with the pH of PARL (CCC=0.495). In conclusion, the study indicated that wireless sensors can satisfactorily reflect the pH of FRL but poorly reflect that of PARL.


Journal of Dairy Science | 2017

Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge

Stefanie U. Wetzels; Evelyne Mann; P. Pourazad; M. Qumar; Beate Pinior; Barbara U. Metzler-Zebeli; Martin Wagner; Stephan Schmitz-Esser; Q. Zebeli

Subacute ruminal acidosis (SARA) is a prevalent metabolic disorder in cattle, characterized by intermittent drops in ruminal pH. This study investigated the effect of a gradual adaptation and continuously induced long-term SARA challenge diet on the epimural bacterial community structure in the rumen of cows. Eight rumen-cannulated nonlactating Holstein cows were transitioned over 1 wk from a forage-based baseline feeding diet (grass silage-hay mix) to a SARA challenge diet, which they were fed for 4 wk. The SARA challenge diet consisted of 60% concentrates (dry matter basis) and 40% grass silage-hay mix. Rumen papillae biopsies were taken at the baseline, on the last day of the 1-wk adaptation, and on the last day of the 4-wk SARA challenge period; ruminal pH was measured using wireless sensors. We isolated DNA from papillae samples for 16S rRNA gene amplicon sequencing using Illumina MiSeq. Sequencing results of most abundant key phylotypes were confirmed by quantitative PCR. Although they were fed similar amounts of concentrate, cows responded differently in terms of ruminal pH during the SARA feeding challenge. Cows were therefore classified as responders (n = 4) and nonresponders (n = 4): only responders met the SARA criterion of a ruminal pH drop below 5.8 for longer than 330 min/d. Data showed that Proteobacteria, Firmicutes, and Bacteroidetes were the most abundant phyla, and at genus level, Campylobacter and Kingella showed highest relative abundance, at 15.5 and 7.8%, respectively. Diversity analyses revealed a significant increase of diversity after the 1-wk adaptation but a decrease of diversity and species richness after the 4-wk SARA feeding challenge, although without distinction between responders and nonresponders. At the level of the operational taxonomic unit, we detected diet-specific shifts in epimural community structure, but in the overall epimural bacterial community structure, we found no differences between responders and nonresponders. Correlation analysis revealed significant associations between grain intake and operational taxonomic unit abundance. The study revealed major shifts in the 3 dominating phyla and, most importantly, a loss of diversity in the epimural bacterial communities during a long-term SARA diet challenge, in which 60% concentrate supply for 4 wk was instrumental rather than the magnitude of the drop of ruminal pH below 5.8.


PLOS ONE | 2016

Evidence of In Vivo Absorption of Lactate and Modulation of Short Chain Fatty Acid Absorption from the Reticulorumen of Non-Lactating Cattle Fed High Concentrate Diets

M. Qumar; R. Khiaosa-ard; P. Pourazad; Stefanie U. Wetzels; Fenja Klevenhusen; Wolfgang Kandler; Jörg R. Aschenbach; Q. Zebeli

Short-chain fatty acids (SCFAs) and lactate are endproducts of rumen fermentation and important energy sources for the host ruminant. Because their rapid accumulation results in ruminal acidosis, enhancement of the absorption of SCFA and lactate across reticuloruminal wall is instrumental in increasing energy supply and preventing ruminal acidosis in cattle. This study investigated whether the reticuloruminal absorption of SCFAs and lactate was altered by different strategies of high concentrate feeding. Eight rumen-cannulated, non-lactating Holstein cows were fed a forage-only diet (baseline) and then gradually adapted over 6 d to a 60% concentrate level. Thereafter, this concentrate-rich diet was fed for 4 wk either continuously (Con; n = 8) or interruptedly (Int; n = 8). Absorption of SCFAs and lactate was determined in vivo from the experimental buffer introduced into the washed reticulorumen. The buffer contained acetate, propionate, butyrate and lactate at a concentration of 60, 30, 10 and 5 mmol/L, respectively and Cr-EDTA as a marker for correcting ruminal water fluxes. The reticuloruminal absorption after 35 and 65 min of buffer incubation was measured at the baseline, after 1 wk of 60% concentrate feeding in the interrupted model (Int-1) and after 4 wk of concentrate feeding in both feeding models (Int-4 and Con-4). Data showed that the absorption rates of individual and total SCFAs during the first 35 min of incubation of Con-4 were highest (~1.7 times compared to baseline), while Int-1 and Int-4 were similar to respective baseline. Lactate was not absorbed during forage-only baseline and 1-wk concentrate feeding, but after 4-wk feeding of concentrates in both models. In conclusion, SCFAs absorption across the reticulorumen of non-lactating cattle was enhanced by the 4-wk continuous concentrate feeding, which seems to be more advantageous in terms of rumen acidosis prevention compared to the interrupted feeding model. The study provides evidence of lactate absorption across the reticulorumen of non-lactating cattle after both continuous and interrupted 4-wk concentrate feeding.


Frontiers in Microbiology | 2016

Epimural Indicator Phylotypes of Transiently-Induced Subacute Ruminal Acidosis in Dairy Cattle

Stefanie U. Wetzels; Evelyne Mann; Barbara U. Metzler-Zebeli; P. Pourazad; M. Qumar; Fenja Klevenhusen; Beate Pinior; Martin Wagner; Q. Zebeli; Stephan Schmitz-Esser

The impact of a long-term subacute rumen acidosis (SARA) on the bovine epimural bacterial microbiome (BEBM) and its consequences for rumen health is poorly understood. This study aimed to investigate shifts in the BEBM during a long-term transient SARA model consisting of two concentrate-diet-induced SARA challenges separated by a 1-week challenge break. Eight cows were fed forage and varying concentrate amounts throughout the experiment. In total, 32 rumen papilla biopsies were taken for DNA isolation (4 sampling time points per cow: at the baseline before concentrate was fed, after the first SARA challenge, after the challenge break, and after the second SARA challenge). Ruminal pH was continuously monitored. The microbiome was determined using Illumina MiSeq sequencing of the 16S rRNA gene (V345 region). In total 1,215,618 sequences were obtained and clustered into 6833 operational taxonomic units (OTUs). Campylobacter and Kingella were the most abundant OTUs (16.5 and 7.1%). According to ruminal pH dynamics, the second challenge was more severe than the first challenge. Species diversity estimates and evenness increased during the challenge break compared to all other sampling time points (P < 0.05). During both SARA challenges, Kingella- and Azoarcus-OTUs decreased (0.5 and 0.4 fold-change) and a dominant Ruminobacter-OTU increased during the challenge break (18.9 fold-change; P < 0.05). qPCR confirmed SARA-related shifts. During the challenge break noticeably more OTUs increased compared to other sampling time points. Our results show that the BEBM re-establishes the baseline conditions slower after a SARA challenge than ruminal pH. Key phylotypes that were reduced during both challenges may help to establish a bacterial fingerprint to facilitate understanding effects of SARA conditions on the BEBM and their consequences for the ruminant host.


Journal of Dairy Science | 2017

Intramammary infusion of Escherichia coli lipopolysaccharide negatively affects feed intake, chewing, and clinical variables, but some effects are stronger in cows experiencing subacute rumen acidosis

S. Aditya; P. Pourazad; R. Khiaosa-ard; Johann Huber; Q. Zebeli

Feeding high-grain diets increases the risk of subacute rumen acidosis (SARA) and adversely affects rumen health. This condition might impair the responsiveness of cows when they are exposed to external infectious stimuli such as lipopolysaccharide (LPS). The main objective of this study was to evaluate various responses to intramammary LPS infusion in healthy dairy cows and those experimentally subjected to SARA. Eighteen early-lactating Simmental cows were subjected to SARA (n = 12) or control (CON; n = 6) feeding conditions. Cows of the control group received a diet containing 40% concentrates (DM basis) throughout the experiment. The intermittent SARA feeding regimen consisted in feeding the cows a ration with 60% concentrate (DM basis) for 32 d, consisting of a first SARA induction for 8 d, switched to the CON diet for 7 d, and re-induction during the last 17 d. On d 30 of the experiment, 6 SARA (SARA-LPS) and 6 CON (CON-LPS) cows were intramammary challenged once with a single dose of 50 μg of LPS from Escherichia coli (O26:B6), whereas the other 6 SARA cows (SARA-PLA) received 10 mL of sterile saline solution as placebo. To confirm the induction of SARA, the reticular pH was continuously monitored via wireless pH probes. The DMI remained unchanged between SARA and CON cows during the feeding experiment, but was reduced in both treatment groups receiving the LPS infusion compared with SARA-PLA, whereby a significant decline was observed for cows of the SARA-LPS treatment (-38%) compared with CON-LPS (-19%). The LPS infusion did not affect the reticuloruminal pH dynamics, but significantly enhanced ruminal temperature and negatively affected chewing behavior. The ruminal temperature increased after the LPS infusion and peaked about 1 h earlier in SARA-LPS cows compared with the cows of the CON-LPS treatment. Moreover, a significant decline in milk yield was found in SARA-LPS compared with CON-LPS following the LPS infusion. Cows receiving LPS had elevated somatic cell counts, protein, and fat contents in milk as well as decreased lactose contents and pH following the LPS infusion, whereby the changes in milk constituents were more pronounced in SARA-LPS than CON-LPS cows. Rectal temperature and pulse rate were highest 6 h after LPS infusion, but rumen contractions were not affected by the LPS infusion. The data suggest that a single intramammary LPS infusion induced fever and negatively affected feed intake, chewing activity, rectal temperature, and milk yield and composition, whereby these effects were more pronounced in SARA cows.


PLOS ONE | 2017

Temporal dynamics of in-situ fiber-adherent bacterial community under ruminal acidotic conditions determined by 16S rRNA gene profiling

Renee M. Petri; P. Pourazad; R. Khiaosa-ard; Fenja Klevenhusen; Barbara U. Metzler-Zebeli; Q. Zebeli

Subacute rumen acidotic (SARA) conditions are a consequence of high grain feeding. Recent work has shown that the pattern of grain feeding can significantly impact the rumen epimural microbiota. In a continuation of these works, the objective of this study was to determine the role of grain feeding patterns on the colonization and associated changes in predicted functional properties of the fiber-adherent microbial community over a 48 h period. Eight rumen-cannulated Holstein cows were randomly assigned to interrupted or continuous 60%-grain challenge model (n = 4 per model) to induce SARA conditions. Cows in the continuous model were challenged for 4 weeks, whereas cows of interrupted model had a 1-wk break in between challenges. To determine dynamics of rumen fiber-adherent microbial community we incubated the same hay from the diet samples for 24 and 48 h in situ during the baseline (no grain fed), week 1 and 4 of the continuous grain feeding model as well as during the week 1 following the break in the interrupted model. Microbial DNA was extracted and 16SrRNA amplicon (V3-V5 region) sequencing was done with the Illumina MiSeq platform. A significant decrease (P < 0.001) in fiber-adherent rumen bacterial species richness and diversity was observed at the end of a 4 week continuous SARA challenge in comparison to the baseline. A total of 159 operational taxonominc units (OTUs) were identified from the microbial population representing > 0.1% relative abundance in the rumen, 18 of which were significantly impacted by the feeding challenge model. Correlation analysis of the significant OTUs to rumen pH as an indicator of SARA showed genus Succiniclasticum had a positive correlation to SARA conditions regardless of treatment. Predictive analysis of functional microbial properties suggested that the glyoxylate/dicarboxylate pathway was increased in response to SARA conditions, decreased between 24h to 48h of incubation, negatively correlated with propanoate metabolism and positively correlated to members of the Veillonellaceae family including Succiniclasticum spp. This may indicate an adaptive response in bacterial metabolism under SARA conditions. This research clearly indicates that changes to the colonizing fiber-adherent rumen microbial population and their predicted functional genes occur in both the short (48 h) and long term (4 wk) under both continuous and interrupted SARA challenge models.


Animal | 2017

Restoration of in situ fiber degradation and the role of fibrolytic microbes and ruminal pH in cows fed grain-rich diets transiently or continuously

P. Pourazad; R. Khiaosa-ard; Barbara U. Metzler-Zebeli; Fenja Klevenhusen; Q. Zebeli

In this study, we used two different grain-rich feeding models (continuous or transient) to determine their effects on in situ fiber degradation and abundances of important rumen fibrolytic microbes in the rumen. The role of the magnitude of ruminal pH drop during grain feeding in the fiber degradation was also determined. The study was performed in eight rumen-fistulated dry cows. They were fed forage-only diet (baseline), and then challenged with a 60% concentrate diet for 4 weeks, either continuously (n=4 cows) or transiently (n=4 cows). The cows of transient feeding had 1 week off concentrate in between. Ruminal degradation of grass silage and fiber-rich hay was determined by the in situ technique, and microbial abundances attached to incubated samples were analyzed by quantitative PCR. The in situ trials were performed at the baseline and in the 1st and the last week of concentrate feeding in the continuous model. The in situ trials were done in cows of the transient model at the baseline and in the 1st week of the re-challenge with concentrate. In situ degradation of NDF and ADF of the forage samples, and microbial abundances were determined at 0, 4, 8, 24 and 48 h of the incubation. Ruminal pH and temperature during the incubation were recorded using indwelling pH sensors. Compared with the respective baseline, both grain-rich feeding models lowered ruminal pH and increased the duration of pH below 5.5 and 5.8. Results of the grass silage incubation showed that in the continuous model the extent of NDF and ADF degradation was lower in the 1st, but not in the last week compared with the baseline. For the transient model, degradation of NDF of the silage was lower during the re-challenge compared with the baseline. Degradation of NDF and ADF of the hay was suppressed by both feeding models compared with the respective baseline. Changes in fiber degradation of either grass silage or hay were not related to the magnitude of ruminal pH depression during grain-rich feeding. In both feeding models total fungal numbers and relative abundance of Butyrivibrio fibrisolvens attached to the incubated forages were decreased by the challenge. Overall, Fibrobacter succinogenes was more sensitive to the grain challenge compared with Ruminococcus albus and Ruminococcus flavefaciens. The study provided evidence for a restored ruminal fiber degradation after prolonged time of grain-rich feeding, however depending on physical and chemical characteristics of forages.


Animal Feed Science and Technology | 2018

Factors related to variation in the susceptibility to subacute ruminal acidosis in early lactating Simmental cows fed the same grain-rich diet

R. Khiaosa-ard; P. Pourazad; S. Aditya; Q. Zebeli


Animal | 2017

Metabolic and stress responses in dairy cows fed a concentrate-rich diet and submitted to intramammary lipopolysaccharide challenge

S. Aditya; P. Pourazad; R. Khiaosa-ard; Q. Zebeli

Collaboration


Dive into the P. Pourazad's collaboration.

Top Co-Authors

Avatar

Q. Zebeli

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

R. Khiaosa-ard

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Barbara U. Metzler-Zebeli

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Fenja Klevenhusen

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

M. Qumar

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Stefanie U. Wetzels

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

S. Aditya

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Beate Pinior

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Evelyne Mann

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Stephan Schmitz-Esser

University of Veterinary Medicine Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge