Qasim Ali
Government College University, Faisalabad
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qasim Ali.
Ecotoxicology and Environmental Safety | 2014
Faisal Islam; Tahira Yasmeen; Qasim Ali; Shafaqat Ali; Muhammad Saleem Arif; Sabir Hussain; Hina Rizvi
Plant Growth Promoting Rhizobacteria (PGPR), whose role is still underestimated, plays an important (or perhaps essential) role in improving plant growth. The comprehensive understanding of bacterial plant growth promoting mechanism helps to get sustainable agriculture production under biotic and abiotic stresses. In the present study, plant growth promoting (PGP) bacterial strain Pseudomonas aeruginosa having maximum inhibitory concentration of 1500mg kg(-1) against Zn was isolated from arable land, irrigated with industrial effluent and evaluated to determine it bioremediation potential. The study was mainly focused on plant biomass production, nutrient uptake and oxidative stress tolerance in relation to the activities of antioxidative enzymes and the content of non-enzymatic antioxidants. The oxidative stress tolerance was measured by estimating the MDA accumulation as well as H2O2 production in wheat plants under Zn (1000mg kg(-1)) stress and inoculation of soil with Zn resistant Pseudomonas aeruginosa. Zn in rooting medium reduced the plant growth, leaf photosynthetic pigments as well as uptake of N and P. However, content of MDA and H2O2 increased at higher concentration of Zn. Inoculation of P. aeruginosa improved the uptake of P and N in wheat plants with an increase in leaf chlorophyll, total soluble protein and plant biomass production. Analysis of plant root and shoot disclosed that Zn concentration was significantly lowered in P. aeruginosa inoculated zinc stressed plants as compare to the plants grown under Zn stress only. The amelioration of adverse effects of Zn stress on biomass production due to P. aeruginosa inoculation was related with enhanced antioxidative enzyme activities (SOD, POD and CAT), and the contents of non-enzymatic components such as ascorbic acid and total phenolics (TPC) as compare to Zn-treated plants. The up-gradation in antioxidative defense mechanism, resulted a reduction in H2O2 and MDA content due to the scavenging of ROS by antioxidants. It was concluded that P. aeruginosa is an ideal candidate for bioremediation and wheat growth promotion against Zn-induced oxidative stress by improving the availability of necessary nutrient, eliciting antioxidant defense system as well as by lowering the Zn metal uptake.
Ecotoxicology and Environmental Safety | 2016
Hafiz Muhammad Tauqeer; Shafaqat Ali; Muhammad Rizwan; Qasim Ali; Rashid Saeed; Usman Iftikhar; Rehan Ahmad; Mujahid Farid; Ghulam Hassan Abbasi
The present study was aimed to evaluate the morphological, physiological and biochemical responses of Alternanthera Bettzickiana (Regel) G. Nicholson plant subjected to different levels of cadmium (Cd) and lead (Pb) (0, 0.5, 1.0 and 2.0 mM) stress. A. bettzickiana was able to accumulate Cd and Pb in different plant parts and total uptake of both metals was higher in shoots than roots. Plant growth, biomass and photosynthetic pigments increased with increasing metal concentrations, up to 1.0 mM, in soil and then decreased with higher metal levels. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) increased under lower metal levels (0.5 and 1.0 mM) while decreased at higher metal levels (2.0 mM). Leaf and root electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents decreased at lower metal levels (≤1.0 mM) while increased at higher levels. The present study clearly signifies the potential of A. bettzickiana plant towards Cd and Pb tolerance and accumulation especially at lower metal levels.
Photochemistry and Photobiology | 2011
Rashida Perveen; Yasir Jamil; Muhammad Ashraf; Qasim Ali; Munawar Iqbal; Muhammad Raza Ahmad
The water‐soaked seeds of sunflower were exposed to low power continuous wave He‐Ne laser irradiation of energies 0, 100, 300 and 500 mJ to evaluate the effect on various biochemical, physiological, growth and yield parameters of sunflower. The experiments which consisted of four replicates arranged in a completely randomized design (CRD) were carried out under the greenhouse conditions. The physiological attributes like, photosynthetic rate (A), transpiration rate (E), intrinsic CO2 concentration (Ci), stomatal conductance (gs), chlorophyll a and b contents, relative membrane permeability and leaf water (ψw), osmotic (ψs) and turgor (ψp) potentials, relative water contents and leaf area increased significantly as compared to control due to He‐Ne treatment of seeds. The activities of superoxide dismutase, peroxidase and catalases and contents of total soluble proteins, malondialdehyde, proline and leaf total phenolic also increased due to laser treatment. Significant increase in growth parameters of sunflower like shoot fresh and dry masses, root fresh and dry masses, root and shoot lengths, number of leaves per plant and stem diameter has also been observed. The contents of K, Ca and Mg in shoot and root were also increased and an overall increase of up to 28.12%% was observed due to laser treatment.
Archives of Agronomy and Soil Science | 2016
Muhammad Umair Arshad; Shafaqat Ali; Ali Noman; Qasim Ali; Muhammad Rizwan; Mujahid Farid; Muhammad Kashif Irshad
A 28-day pot (sand culture) experiment was carried to evaluate the effects of phosphorus (P) application in alleviating Cd phytotoxicity in wheat plants. Different levels of P (0, 10, and 20 kg ha−1) were applied without and with 100 µM Cd. The results showed that 100 µM Cd concentration decreased plant biomass, chlorophyll contents, gas exchange attributes, and mineral nutrients in wheat plants. Cadmium stress increased tissue Cd and H2O2 concentrations. The activities of superoxide dismutases (SOD), peroxidase (POD) enzymes, increased while the activities of catalase (CAT), ascorbic acid (AsA), α-tocopherol, and phenolics decreased under Cd stress. Phosphorus supply increased shoot biomass, leaf area, photosynthetic pigments, and mineral nutrients and decreased Cd and H2O2 concentrations in shoots. Phosphorus application improved antioxidant enzyme activities and gas exchange attributes which emerged as an important mechanism of Cd tolerance in wheat. We conclude that P application contributes to decreased Cd concentrations in wheat shoots and increased gas exchange attributes and antioxidant enzymes and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat for sustained production of this important grain crop.
Photochemistry and Photobiology | 2010
Rashida Perveen; Qasim Ali; Muhammad Ashraf; Fahad Al-Qurainy; Yasir Jamil; Muhammad Raza Ahmad
In this study, water‐soaked seeds of sunflower were exposed to He–Ne laser irradiation of different energies to determine whether or not He–Ne laser irradiation caused changes to seed thermodynamic and germination parameters as well as effects on the activities of germination enzymes. The experiment comprised four energy levels: 0 (control), 100, 300 and 500 mJ of laser energy and each treatment replicated four times arranged in a completely randomized design. The experimentation was performed under the greenhouse conditions in the net‐house of the Department of Botany, University of Agriculture, Faisalabad. The seed thermodynamic parameters were calculated according to seed germination thermograms determined with a calorimeter at 25.8°C for 72 h. Various thermodynamic parameters of seed (ΔH, (ΔS)e, (ΔS)c, (ΔS)e/Δt and (ΔS)c/Δt) were affected significantly due to presowing laser treatment. Significant changes in seed germination parameters and enzyme activities were observed in seeds treated with He–Ne laser. The He–Ne laser seed treatment resulted in increased activities of amylase and protease. These results indicate that the low power continuous wave He–Ne laser light seed treatment has considerable biological effects on seed metabolism. This seed treatment technique can be potentially employed to enhance agricultural productivity.
Archives of Agronomy and Soil Science | 2015
Ali Noman; Shafaqat Ali; Fomia Naheed; Qasim Ali; Mujahid Farid; Muhammad Rizwan; Muhammad Kashif Irshad
Maize (Zea mays L.), grown in different Asian countries, undergoes drought stress during the hot summer periods, which is the most common cause for reduced growth and yield of maize worldwide. A greenhouse experiment was conducted to investigate the prompting role of ascorbic acid (AsA) in maize drought-tolerant (Agaiti-2002) and drought-sensitive (EV-1098) cultivars under two drought stress levels (control and 65% field capacity). Ascorbate is essential for plants due to its function as antioxidant and protector against environmental stresses. The results showed that drought stress reduced the plant growth, fresh and dry biomass, and photosynthetic pigments of maize plants. Exogenous application of ascorbic acid lowered the drought stress-induced reduction in growth, biomass, and photosynthetic pigments. Drought stress enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD) in maize plants, and application of AsA further enhanced the activity of these enzymes. The results indicate that foliar application of AsA alleviated the detrimental effects of drought stress in maize plants by improving the antioxidative defense system. The cultivar EV-1098 was found to be relatively resistant to drought stress. Our research suggested that foliarly applied AsA may be useful for the sustainable maize production under drought-stressed ecologies.
International Journal of Molecular Sciences | 2013
Qasim Ali; Farooq Anwar; Muhammad Ashraf; Nazamid Saari; Rashida Perveen
This study was carried out to appraise whether or not the exogenous application of a potential osmoprotectant, proline, could ameliorate the adverse effects of drought stress on maize seed and seed oil composition, as well as oil antioxidant activity. Water stress reduced the kernel sugar, oil, protein and moisture contents and most of the seed macro- and micro-elements analyzed in both maize cultivars but it increased the contents of seed fiber and ash. Water stress increased the oil oleic acid content with a subsequent decrease in the amount of linoleic acid, resulting in an increased oil oleic/linoleic ratio for both maize cultivars. However, no variation was observed in oil stearic and palmitic acids content due to water stress. A considerable drought induced an increase in seed oil α-, γ-, δ- and total tocopherols and flavonoids were observed in both maize cultivars. However, oil phenolic and carotenoid content as well as 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity decreased. Foliar-applied proline significantly increased the content of seed sugar, oil, protein, moisture, fiber and ash in both maize cultivars under well irrigated and water deficit conditions. Furthermore, exogenous application of proline increased the oil oleic and linoleic acid contents. The concentrations of antioxidant compounds namely phenolics, carotenoids, flavonoids and tocopherols estimated in the seed oil increased due to foliar-applied proline under water deficit conditions that was positively correlated with the enhanced oil DPPH free radical scavenging activity. Moreover, the increase in the contents of these antioxidant compounds and oil antioxidant activity due to the foliar application of proline was noted to be more pronounced under water deficit conditions.
Ecotoxicology and Environmental Safety | 2015
Muhammad Adrees; Shafaqat Ali; Muhammad Iqbal; Saima Aslam Bharwana; Zeenat Siddiqi; Mujahid Farid; Qasim Ali; Rashid Saeed; Muhammad Rizwan
Chromium (Cr) is one of the most phytotoxic metals in the agricultural soils and its concentration is continuously increasing mainly through anthropogenic activities. Little is known on the role of mannitol (M) on plant growth and physiology under metal stress. The aim of this study was to investigate the mechanism of growth amelioration and antioxidant enzyme activities in Cr-stressed wheat (Triticum aestivum L. cv. Lasani 2008) by exogenously applied mannitol. For this, wheat seedlings were sown in pots containing soil or sand and subjected to increasing Cr concentration (0, 0.25 and 0.5mM) in the form of of K2Cr2O7 with and without foliar application of 100mM mannitol. Plants were harvested after four months and data regarding growth characteristics, biomass, photosynthetic pigments, and antioxidant enzymes were recorded. Mannitol application increased plant biomass, photosynthetic pigments and antioxidant enzymes while decreased Cr uptake and accumulation in plants as compared to Cr treatments alone. In this study, we observed that M applied exogenously to Cr-stressed wheat plants, which normally cannot synthesize M, improved their Cr tolerance by increasing growth, photosynthetic pigments and enhancing activities of antioxidant enzymes and by decreasing Cr uptake and translocation in wheat plants. From this study, it can be concluded that M could be used to grow crops on marginally contaminated soils for which separate remediation techniques are time consuming and not cost effective.
Laser Physics Letters | 2013
Yasir Jamil; Rashida Perveen; Muhammad Ashraf; Qasim Ali; Munawar Iqbal; Muhammad Raza Ahmad
Using low power continuous wave He–Ne laser irradiation of seeds, the germination characteristics, thermodynamic changes and enzyme activities as well as changes in morphological attributes were explored for wheat (Triticum aestivum L. cv. S-24) cultivar. The changes in thermodynamic properties such as change in enthalpy (ΔH), entropy generation [(ΔSe)], entropy flux [(ΔSc)], entropy generation ratio [(ΔS)e/Δt], and entropy flux ratio [(ΔS)c/Δt] showed significant (P < 0.05) changes at an energy level of 500 mJ. The germination energy (GE), germination percentage (G%), germination index (GI) as well as α-amylase and protease activities was also found to be higher at 500 mJ, while the mean emergence time (MET) and time for 50% germination (E50) decreased for 300 mJ irradiance. The internal energy of the seeds increased significantly at all laser energy levels, but was highest for 500 mJ 72 h after sowing. The enzyme activities increased up to 24 h after sowing and then declined. The activities of α-amylase and protease were found to be positively correlated with the plant physiological attributes. These results indicate that low power continuous wave He–Ne laser (632 nm) treatment has considerable biological effects on seed metabolism during germination as well as on later vegetative growth.
Environmental Science and Pollution Research | 2016
Faisal Islam; Tahira Yasmeen; Qasim Ali; Muhammad Mubin; Shafaqat Ali; Muhammad Saleem Arif; Sabir Hussain; Muhammad Riaz; Farhat Abbas
For effective microbe-assisted bioremediation, metal-resistant plant growth-promoting bacteria (PGPB) must facilitate plant growth by restricting excess metal uptake in plants, leading to prevent its bio-amplification in the ecosystem. The aims of our study were to isolate and characterize copper (Cu)-resistant PGPB from waste water receiving contaminated soil. In addition, we investigated the phytotoxic effect of copper on the lentil plants inoculated with copper-resistant bacteria Providencia vermicola, grown in copper-contaminated soil. Copper-resistant P. vermicola showed multiple plant growth promoting characteristics, when used as a seed inoculant. It protected the lentil plants from copper toxicity with a considerable increase in root and shoot length, plant dry weight and leaf area. A notable increase in different gas exchange characteristics such as A, E, Ci, gs, and A/E, as well as increase in N and P accumulation were also recorded in inoculated plants as compared to un-inoculated copper stressed plants. In addition, leaf chlorophyll content, root nodulation, number of pods, 1,000 seed weight were also higher in inoculated plants as compared with non-inoculated ones. Anti-oxidative defense mechanism improved significantly via elevated expression of reactive oxygen species -scavenging enzymes including ascorbate peroxidase, superoxide dismutase, catalase, and guaiacol peroxidase with alternate decrease in malondialdehyde and H2O2 contents, reduced electrolyte leakage, proline, and total phenolic contents suggesting that inoculation of P. vermicola triggered heavy metals stress-related defense pathways under copper stress. Overall, the results demonstrated that the P. vermicola seed inoculation confer heavy metal stress tolerance in lentil plant which can be used as a potent biotechnological tool to cope with the problems of copper pollution in crop plants for better yield.