Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mujahid Farid is active.

Publication


Featured researches published by Mujahid Farid.


Ecotoxicology and Environmental Safety | 2015

Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review

Muhammad Adrees; Shafaqat Ali; Muhammad Rizwan; Muhammad Zia-ur-Rehman; Muhammad Ibrahim; Farhat Abbas; Mujahid Farid; Muhammad Farooq Qayyum; Muhammad Kashif Irshad

In present era, heavy metal pollution is rapidly increasing which present many environmental problems. These heavy metals are mainly accumulated in soil and are transferred to food chain through plants grown on these soils. Silicon (Si) is the second most abundant element in the soil. It has been widely reported that Si can stimulate plant growth and alleviate various biotic and abiotic stresses, including heavy metal stress. Research to date has explored a number of mechanisms through which Si can alleviate heavy metal toxicity in plants at both plant and soil levels. Here we reviewed the mechanisms through which Si can alleviate heavy metal toxicity in plants. The key mechanisms evoked include reducing active heavy metal ions in growth media, reduced metal uptake and root-to-shoot translocation, chelation and stimulation of antioxidant systems in plants, complexation and co-precipitation of toxic metals with Si in different plant parts, compartmentation and structural alterations in plants and regulation of the expression of metal transport genes. However, these mechanisms might be associated with plant species, genotypes, metal elements, growth conditions, duration of the stress imposed and so on. Further research orientation is also discussed.


Environmental Science and Pollution Research | 2015

The effect of excess copper on growth and physiology of important food crops: a review.

Muhammad Adrees; Shafaqat Ali; Muhammad Rizwan; Muhammad Ibrahim; Farhat Abbas; Mujahid Farid; Muhammad Zia-ur-Rehman; Muhammad Kashif Irshad; Saima Aslam Bharwana

In recent years, copper (Cu) pollution in agricultural soils, due to arbitrary use of pesticides, fungicides, industrial effluent and wastewater irrigation, present a major concern for sustainable agrifood production especially in developing countries. The world’s major food requirement is fulfilled through agricultural food crops. The Cu-induced losses in growth and yield of food crops probably exceeds from all other causes of food safety and security threats. Here, we review the adverse effects of Cu excess on growth and yield of essential food crops. Numerous studies reported the Cu-induced growth inhibition, oxidative damage and antioxidant response in agricultural food crops such as wheat, rice, maize, sunflower and cucumber. This article also describes the toxic levels of Cu in crops that decreased plant growth and yield due to alterations in mineral nutrition, photosynthesis, enzyme activities and decrease in chlorophyll biosynthesis. The response of various crops to elevated Cu concentrations varies depending upon nature of crop and cultivars used. This review could be helpful to understand the Cu toxicity and the mechanism of its tolerance in food crops. We recommend that Cu-tolerant crops should be grown on Cu-contaminated soils in order to ameliorate the toxic effects for sustainable farming systems and to meet the food demands of the intensively increasing population.


Ecotoxicology and Environmental Safety | 2014

Citric acid assisted phytoremediation of copper by Brassica napus L.

Ihsan Elahi Zaheer; Shafaqat Ali; Muhammad Rizwan; Mujahid Farid; Muhammad Bilal Shakoor; Rafaqa Ali Gill; Ullah Najeeb; Naeem Iqbal; Rehan Ahmad

Use of organic acids for promoting heavy metals phytoextraction is gaining worldwide attention. The present study investigated the influence of citric acid (CA) in enhancing copper (Cu) uptake by Brassica napus L. seedlings. 6 Weeks old B. napus seedlings were exposed to different levels of copper (Cu, 0, 50 and 100µM) alone or with CA (2.5mM) in a nutrient medium for 40 days. Exposure to elevated Cu levels (50 and 100µM) significantly reduced the growth, biomass production, chlorophyll content, gas exchange attributes and soluble proteins of B. napus seedlings. In addition, Cu toxicity increased the production of hydrogen peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) in leaf and root tissues of B. napus. Activities of antioxidant enzymes such as guaiacol peroxidase (POD), superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidase (APX) in root and shoot tissues of B. napus were increased in response to lower Cu concentration (50µM) but increased under higher Cu concentration (100µM). Addition of CA into nutrient medium significantly alleviated Cu toxicity effects on B. napus seedlings by improving photosynthetic capacity and ultimately plant growth. Increased activities of antioxidant enzymes in CA-treated plants seems to play a role in capturing of stress-induced reactive oxygen species as was evident from lower level of H2O2, MDA and EL in CA-treated plants. Increasing Cu concentration in the nutrient medium significantly increased Cu concentration in in B. napus tissues. Cu uptake was further increased by CA application. These results suggested that CA might be a useful strategy for increasing phytoextraction of Cu from contaminated soils.


Environmental Science and Pollution Research | 2015

Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review

Muhammad Rizwan; Shafaqat Ali; Muhammad Ibrahim; Mujahid Farid; Muhammad Adrees; Saima Aslam Bharwana; Muhammad Zia-ur-Rehman; Muhammad Farooq Qayyum; Farhat Abbas

Drought and salinity are the main abiotic stresses limiting crop yield and quality worldwide. Improving food production in drought- and salt-prone areas is the key to meet the increasing food demands in near future. It has been widely reported that silicon (Si), a second most abundant element in soil, could reduce drought and salt stress in plants. Here, we reviewed the emerging role of Si in enhancing drought and salt tolerance in plants and highlighted the mechanisms through which Si could alleviate both drought and salt stress in plants. Silicon application increased plant growth, biomass, photosynthetic pigments, straw and grain yield, and quality under either drought or salt stress. Under both salt and drought stress, the key mechanisms evoked are nutrient elements homeostasis, modification of gas exchange attributes, osmotic adjustment, regulating the synthesis of compatible solutes, stimulation of antioxidant enzymes, and gene expression in plants. In addition, Si application decreased Na+ uptake and translocation while increased K+ uptake and translocation under salt stress. However, these mechanisms vary with plant species, genotype, growth conditions, duration of stress imposed, and so on. This review article highlights the potential for improving plant resistance to drought and salt stress by Si application and provides a theoretical basis for application of Si in saline soils and arid and semiarid regions worldwide. This review article also highlights the future research needs about the role of Si under drought stress and in saline soils.


Ecotoxicology and Environmental Safety | 2014

Citric acid improves lead (pb) phytoextraction in brassica napus L. by mitigating pb-induced morphological and biochemical damages.

Muhammad Bilal Shakoor; Shafaqat Ali; Amjad Hameed; Mujahid Farid; Sabir Hussain; Tahira Yasmeen; Ullah Najeeb; Saima Aslam Bharwana; Ghulam Hasan Abbasi

Phytoextraction is an environmentally friendly and a cost-effective strategy for remediation of heavy metal contaminated soils. However, lower bioavailability of some of the metals in polluted environments e.g. lead (Pb) is a major constraint of phytoextraction process that could be overcome by applying organic chelators. We conducted a glasshouse experiment to evaluate the role of citric acid (CA) in enhancing Pb phytoextraction. Brassica napus L. seedlings were grown in hydroponic media and exposed to various treatments of Pb (50 and 100 μM) as alone or in combination with CA (2.5mM) for six weeks. Pb-induced damage in B. napus toxicity was evident from elevated levels of malondialdehyde (MDA) and H2O2 that significantly inhibited plant growth, biomass accumulation, leaf chlorophyll contents and gas exchange parameters. Alternatively, CA application to Pb-stressed B. napus plants arrested lipid membrane damage by limiting MDA and H2O2 production and by improving antioxidant enzyme activities. In addition, CA significantly increased the Pb accumulation in B. napus plants. The study concludes that CA has a potential to improve Pb phytoextraction without damaging plant growth.


Journal of Hazardous Materials | 2017

Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review

Muhammad Rizwan; Shafaqat Ali; Muhammad Farooq Qayyum; Yong Sik Ok; Muhammad Adrees; Muhammad Ibrahim; Muhammad Zia-ur-Rehman; Mujahid Farid; Farhat Abbas

The concentrations of engineered metal and metal oxide nanoparticles (NPs) have increased in the environment due to increasing demand of NPs based products. This is causing a major concern for sustainable agriculture. This review presents the effects of NPs on agricultural crops at biochemical, physiological and molecular levels. Numerous studies showed that metal and metal oxide NPs affected the growth, yield and quality of important agricultural crops. The NPs altered mineral nutrition, photosynthesis and caused oxidative stress and induced genotoxicity in crops. The activities of antioxidant enzymes increased at low NPs toxicity while decreased at higher NPs toxicity in crops. Due to exposure of crop plants to NPs, the concentration of NPs increased in different plant parts including fruits and grains which could transfer to the food chain and pose a threat to human health. In conclusion, most of the NPs have both positive and negative effects on crops at physiological, morphological, biochemical and molecular levels. The effects of NPs on crop plants vary greatly with plant species, growth stages, growth conditions, method, dose, and duration of NPs exposure along with other factors. Further research orientation is also discussed in this review article.


Ecotoxicology and Environmental Safety | 2016

Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response.

Hafiz Muhammad Tauqeer; Shafaqat Ali; Muhammad Rizwan; Qasim Ali; Rashid Saeed; Usman Iftikhar; Rehan Ahmad; Mujahid Farid; Ghulam Hassan Abbasi

The present study was aimed to evaluate the morphological, physiological and biochemical responses of Alternanthera Bettzickiana (Regel) G. Nicholson plant subjected to different levels of cadmium (Cd) and lead (Pb) (0, 0.5, 1.0 and 2.0 mM) stress. A. bettzickiana was able to accumulate Cd and Pb in different plant parts and total uptake of both metals was higher in shoots than roots. Plant growth, biomass and photosynthetic pigments increased with increasing metal concentrations, up to 1.0 mM, in soil and then decreased with higher metal levels. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) increased under lower metal levels (0.5 and 1.0 mM) while decreased at higher metal levels (2.0 mM). Leaf and root electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents decreased at lower metal levels (≤1.0 mM) while increased at higher levels. The present study clearly signifies the potential of A. bettzickiana plant towards Cd and Pb tolerance and accumulation especially at lower metal levels.


Archives of Agronomy and Soil Science | 2016

Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress

Muhammad Umair Arshad; Shafaqat Ali; Ali Noman; Qasim Ali; Muhammad Rizwan; Mujahid Farid; Muhammad Kashif Irshad

A 28-day pot (sand culture) experiment was carried to evaluate the effects of phosphorus (P) application in alleviating Cd phytotoxicity in wheat plants. Different levels of P (0, 10, and 20 kg ha−1) were applied without and with 100 µM Cd. The results showed that 100 µM Cd concentration decreased plant biomass, chlorophyll contents, gas exchange attributes, and mineral nutrients in wheat plants. Cadmium stress increased tissue Cd and H2O2 concentrations. The activities of superoxide dismutases (SOD), peroxidase (POD) enzymes, increased while the activities of catalase (CAT), ascorbic acid (AsA), α-tocopherol, and phenolics decreased under Cd stress. Phosphorus supply increased shoot biomass, leaf area, photosynthetic pigments, and mineral nutrients and decreased Cd and H2O2 concentrations in shoots. Phosphorus application improved antioxidant enzyme activities and gas exchange attributes which emerged as an important mechanism of Cd tolerance in wheat. We conclude that P application contributes to decreased Cd concentrations in wheat shoots and increased gas exchange attributes and antioxidant enzymes and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat for sustained production of this important grain crop.


Archives of Agronomy and Soil Science | 2015

Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress

Ali Noman; Shafaqat Ali; Fomia Naheed; Qasim Ali; Mujahid Farid; Muhammad Rizwan; Muhammad Kashif Irshad

Maize (Zea mays L.), grown in different Asian countries, undergoes drought stress during the hot summer periods, which is the most common cause for reduced growth and yield of maize worldwide. A greenhouse experiment was conducted to investigate the prompting role of ascorbic acid (AsA) in maize drought-tolerant (Agaiti-2002) and drought-sensitive (EV-1098) cultivars under two drought stress levels (control and 65% field capacity). Ascorbate is essential for plants due to its function as antioxidant and protector against environmental stresses. The results showed that drought stress reduced the plant growth, fresh and dry biomass, and photosynthetic pigments of maize plants. Exogenous application of ascorbic acid lowered the drought stress-induced reduction in growth, biomass, and photosynthetic pigments. Drought stress enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD) in maize plants, and application of AsA further enhanced the activity of these enzymes. The results indicate that foliar application of AsA alleviated the detrimental effects of drought stress in maize plants by improving the antioxidative defense system. The cultivar EV-1098 was found to be relatively resistant to drought stress. Our research suggested that foliarly applied AsA may be useful for the sustainable maize production under drought-stressed ecologies.


Archives of Agronomy and Soil Science | 2016

Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis, and suppressing Ni uptake and oxidative stress

Ammara Khaliq; Shafaqat Ali; Amjad Hameed; Muhammad A. Farooq; Mujahid Farid; Muhammad Bilal Shakoor; Khalid Mahmood; Wajid Ishaque; Muhammad Rizwan

Cotton (Gossypium hirsutum L.) is a well-known and economically most beneficial crop worldwide while nickel (Ni) toxicity is a widespread problem in crops grown on Ni-contaminated soils. We investigated the response of silicon (Si) in cotton under Ni stress with respect to growth, biomass, gas exchange attributes, enzymatic activities, and Ni uptake and accumulation. For this, plants were grown in hydroponics for 12 weeks with three levels of Ni (0, 50, and 100 µM) in the presence or absence of 1 mM Si. Results showed that Ni significantly reduced the plant growth, biomass, gas exchange attributes, and pigment contents while Si application mitigated these adverse effects under Ni stress. Nickel stress significantly decreased antioxidant enzymes’ activities while increased malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EC) in leaves and roots. The application of Si enhanced the activities of antioxidant enzymes and reduced MDA, H2O2, and EC in plants. Nickel application significantly increased Ni concentration and accumulation in leaf, stem, and roots while Si application significantly decreased Ni in these plant parts. The present study indicates that Si could improve cotton growth under Ni stress by lowering Ni uptake and reactive oxygen species (ROS) and by increasing antioxidant enzymes activities.

Collaboration


Dive into the Mujahid Farid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saima Aslam Bharwana

Government College University

View shared research outputs
Top Co-Authors

Avatar

Shafaqat Ali

Government College University

View shared research outputs
Top Co-Authors

Avatar

Rehan Ahmad

Government College University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muhammad Adrees

Government College University

View shared research outputs
Top Co-Authors

Avatar

Muhammad Ibrahim

Government College University

View shared research outputs
Top Co-Authors

Avatar

Usman Iftikhar

Government College University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge