Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qi Dong is active.

Publication


Featured researches published by Qi Dong.


Angewandte Chemie | 2016

Why Do Lithium–Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect

Xiahui Yao; Qi Dong; Qingmei Cheng; Dunwei Wang

Abstract As an electrochemical energy‐storage technology with the highest theoretical capacity, lithium–oxygen batteries face critical challenges in terms of poor stabilities and low charge/discharge round‐trip efficiencies. It is generally recognized that these issues are connected to the parasitic chemical reactions at the anode, electrolyte, and cathode. While the detailed mechanisms of these reactions have been studied separately, the possible synergistic effects between these reactions remain poorly understood. To fill in the knowledge gap, this Minireview examines literature reports on the parasitic chemical reactions and finds the reactive oxygen species a key chemical mediator that participates in or facilitates nearly all parasitic chemical reactions. Given the ubiquitous presence of oxygen in all test cells, this finding is important. It offers new insights into how to stabilize various components of lithium–oxygen batteries for high‐performance operations and how to eventually materialize the full potentials of this promising technology.


Nano Letters | 2015

Achieving Low Overpotential Li-O₂ Battery Operations by Li₂O₂ Decomposition through One-Electron Processes.

Jin Xie; Qi Dong; Ian P. Madden; Xiahui Yao; Qingmei Cheng; Paul Dornath; Wei Fan; Dunwei Wang

As a promising high-capacity energy storage technology, Li-O2 batteries face two critical challenges, poor cycle lifetime and low round-trip efficiencies, both of which are connected to the high overpotentials. The problem is particularly acute during recharge, where the reactions typically follow two-electron mechanisms that are inherently slow. Here we present a strategy that can significantly reduce recharge overpotentials. Our approach seeks to promote Li2O2 decomposition by one-electron processes, and the key is to stabilize the important intermediate of superoxide species. With the introduction of a highly polarizing electrolyte, we observe that recharge processes are successfully switched from a two-electron pathway to a single-electron one. While a similar one-electron route has been reported for the discharge processes, it has rarely been described for recharge except for the initial stage due to the poor mobilities of surface bound superoxide ions (O2(-)), a necessary intermediate for the mechanism. Key to our observation is the solvation of O2(-) by an ionic liquid electrolyte (PYR14TFSI). Recharge overpotentials as low as 0.19 V at 100 mA/g(carbon) are measured.


ACS Applied Materials & Interfaces | 2015

Functionalizing Titanium Disilicide Nanonets with Cobalt Oxide and Palladium for Stable Li Oxygen Battery Operations.

Xiahui Yao; Qingmei Cheng; Jin Xie; Qi Dong; Dunwei Wang

Li oxygen (Li-O2) batteries promise high energy densities but suffer from challenges such as poor cycling lifetime and low round-trip efficiencies. Recently, the instability of carbon cathode support has been recognized to contribute significantly to the problems faced by Li-O2 batteries. One strategy to address the challenge is to replace carbon materials with carbon-free ones. Here, we present titanium silicide nanonets (TiSi2) as such a new material platform for this purpose. Because TiSi2 exhibits no oxygen reduction reaction (ORR) or oxygen evolution reaction (OER) activities, catalysts are required to promote discharge and recharge reactions at reduced overpotentials. Pd nanoparticles grown by atomic layer deposition (ALD) were observed to provide the bifunctionalities of ORR and OER. Their adhesion to TiSi2 nanonets, however, was found to be poor, leading to drastic performance decay due to Pd detachments and aggregation. The problem was solved by adding another layer of Co3O4, also prepared by ALD. Together, the Pd/Co3O4/TiSi2 combination affords the desired functionalities and stability. Li-O2 test cells that lasted more than 126 cycles were achieved. The reversible formation and decomposition of Li2O2 was verified by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), ferrocenium back-titration, and gas-chromatography and mass spectrometry (GC-MS). Our results provide a new material platform for detailed studies of Li-O2 operations for better understanding of the chemistries involved, which is expected to help pave the way toward practical Li-O2 battery realizations.


Journal of the American Chemical Society | 2018

Electrochemically Switchable Ring-Opening Polymerization of Lactide and Cyclohexene Oxide

Miao Qi; Qi Dong; Dunwei Wang; Jeffery A. Byers

An electrochemical method was developed for the redox switchable polymerization of lactide and cyclohexene oxide. Using a lithium reversible sacrificial electrode and a high surface area carbon working electrode, efficient transformation between formally iron(II) and iron(III) oxidation states of a bis(imino)pyridine iron alkoxide complex was possible, which led to the ability to activate the complex for ring opening polymerization reactions. In addition to serving as a redox trigger, an electrochemical toggle switch was developed in which the chemoselectivity for lactide and epoxide polymerization was altered in situ. These findings led to the synthesis of poly(lactic acid- b-cyclohexene oxide) block copolymers in which the sequence of monomers incorporated is controlled by the electrical potential applied.


Chemical Communications | 2016

Enabling rechargeable non-aqueous Mg–O2 battery operations with dual redox mediators

Qi Dong; Xiahui Yao; Jingru Luo; Xizi Zhang; Hajin Hwang; Dunwei Wang

Dual redox mediators (RMs) were introduced for Mg-O2 batteries. 1,4-Benzoquinone (BQ) facilitates the discharge with an overpotential reduction of 0.3 V. 5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt(ii) (Co(ii)TPP) facilitates the recharge with an overpotential decrease of up to 0.3 V. Importantly, the two redox mediators are compatible in the same DMSO-based electrolyte.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation.

Yanyan Zhao; Ke R. Yang; Zechao Wang; Xingxu Yan; Sufeng Cao; Yifan Ye; Qi Dong; Xizi Zhang; James E. Thorne; Lei Jin; Kelly L. Materna; Antonios Trimpalis; Hongye Bai; Sirine C. Fakra; Xiaoyan Zhong; Peng Wang; Xiaoqing Pan; Jinghua Guo; Maria Flytzani-Stephanopoulos; Gary W. Brudvig; Victor S. Batista; Dunwei Wang

Significance While research on single-atom catalysts (SACs) is arguably mature, rare work has been done on atomically dispersed catalyst featuring two atoms. We synthesized Ir dinuclear heterogeneous catalyst in a facile photochemical way. It exhibits outstanding stability and high activity toward water oxidation. The significance of this work can also be appreciated from the catalysis perspective. A grand challenge in heterogeneous catalysis is how to understand the detailed mechanisms at the molecular level, because the most active heterogeneous catalysts are often poorly defined in their atomic structures. Our finding is built upon recent advances aimed at studying SACs but takes a crucial step forward. It provides a material platform to study reactions that would require more than one active site. Atomically dispersed catalysts refer to substrate-supported heterogeneous catalysts featuring one or a few active metal atoms that are separated from one another. They represent an important class of materials ranging from single-atom catalysts (SACs) and nanoparticles (NPs). While SACs and NPs have been extensively reported, catalysts featuring a few atoms with well-defined structures are poorly studied. The difficulty in synthesizing such structures has been a critical challenge. Here we report a facile photochemical method that produces catalytic centers consisting of two Ir metal cations, bridged by O and stably bound to a support. Direct evidence unambiguously supporting the dinuclear nature of the catalysts anchored on α-Fe2O3 is obtained by aberration-corrected scanning transmission electron microscopy (AC-STEM). Experimental and computational results further reveal that the threefold hollow binding sites on the OH-terminated surface of α-Fe2O3 anchor the catalysts to provide outstanding stability against detachment or aggregation. The resulting catalysts exhibit high activities toward H2O photooxidation.


Nano Research | 2017

Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications

Jingru Luo; Xiahui Yao; Lei Yang; Yang Han; Liao Chen; Xiumei Geng; Vivek Vattipalli; Qi Dong; Wei Fan; Dunwei Wang; Hongli Zhu

Porous carbon materials are widely used in particulate forms for energy applications such as fuel cells, batteries, and (super) capacitors. To better hold the particles together, polymeric additives are utilized as binders, which not only increase the weight and volume of the devices, but also cause adverse side effects. We developed a wood-derived, free-standing porous carbon electrode and successfully applied it as a cathode in Li-O2 batteries. The spontaneously formed hierarchical porous structure exhibits good performance in facilitating the mass transport and hosting the discharge products of Li2O2. Heteroatom (N) doping further improves the catalytic activity of the carbon cathode with lower overpotential and higher capacity. Overall, the Li-O2 battery based on the new carbon cathode affords a stable energy efficiency of 65% and can be operated for 20 cycles at a discharge depth of 70%. The wood-derived free-standing carbon represents a new, unique structure for energy applications.


ACS Applied Materials & Interfaces | 2018

Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions

Wei Li; Ke R. Yang; Xiahui Yao; Yumin He; Qi Dong; Gary W. Brudvig; Victor S. Batista; Dunwei Wang

The performance of a photoelectrochemical (PEC) system is highly dependent on the charge separation, transport and transfer characteristics at the photoelectrode|electrolyte interface. Of the factors that influence the charge behaviors, the crystalline facets of the semiconductor in contact with the electrolyte play an important role but has been poorly studied previously. Here, we present a study aimed at understanding how the different facets of hematite affect the charge separation and transfer behaviors in a solar water oxidation reaction. Specifically, hematite crystallites with predominantly {012} and {001} facets exposed were synthesized. Density functional theory (DFT) calculations revealed that hematite {012} surfaces feature higher OH coverage, which was confirmed by X-ray photoelectron spectroscopy (XPS). These surface OH groups act as active sites to mediate water oxidation reactions, which plays a positive role for the PEC system. These surface OH groups also facilitate charge recombination, which compromises the charge separation capabilities of hematite. Indeed, intensity modulated photocurrent spectroscopy (IMPS) confirmed that hematite {012} surfaces exhibit higher rate constants for both charge transfer and recombination. Open circuit potential (OCP) measurements revealed that the hematite {012} surface exhibits a greater degree of Fermi level pinning effect. Our results shed light on how different surface crystal structures may change surface kinetics and energetics. The information is expected to contribute to efforts on optimizing PEC performance for practical solar fuel synthesis.


ACS central science | 2018

Selective CO Production by Photoelectrochemical Methane Oxidation on TiO2

Wei Li; Da He; Guoxiang Hu; Xiang Li; Gourab Banerjee; Jingyi Li; Shin Hee Lee; Qi Dong; Tianyue Gao; Gary W. Brudvig; Matthias M. Waegele; De-en Jiang; Dunwei Wang

The inertness of the C–H bond in CH4 poses significant challenges to selective CH4 oxidation, which often proceeds all the way to CO2 once activated. Selective oxidation of CH4 to high-value industrial chemicals such as CO or CH3OH remains a challenge. Presently, the main methods to activate CH4 oxidation include thermochemical, electrochemical, and photocatalytic reactions. Of them, photocatalytic reactions hold great promise for practical applications but have been poorly studied. Existing demonstrations of photocatalytic CH4 oxidation exhibit limited control over the product selectivity, with CO2 as the most common product. The yield of CO or other hydrocarbons is too low to be of any practical value. In this work, we show that highly selective production of CO by CH4 oxidation can be achieved by a photoelectrochemical (PEC) approach. Under our experimental conditions, the highest yield for CO production was 81.9%. The substrate we used was TiO2 grown by atomic layer deposition (ALD), which features high concentrations of Ti3+ species. The selectivity toward CO was found to be highly sensitive to the substrate types, with significantly lower yield on P25 or commercial anatase TiO2 substrates. Moreover, our results revealed that the selectivity toward CO also depends on the applied potentials. Based on the experimental results, we proposed a reaction mechanism that involves synergistic effects by adjacent Ti sites on TiO2. Spectroscopic characterization and computational studies provide critical evidence to support the mechanism. Furthermore, the synergistic effect was found to parallel heterogeneous CO2 reduction mechanisms. Our results not only present a new route to selective CH4 oxidation, but also highlight the importance of mechanistic understandings in advancing heterogeneous catalysis.


ACS central science | 2018

End-On Bound Iridium Dinuclear Heterogeneous Catalysts on WO3 for Solar Water Oxidation

Yanyan Zhao; Xingxu Yan; Ke R. Yang; Sufeng Cao; Qi Dong; James E. Thorne; Kelly L. Materna; Shasha Zhu; Xiaoqing Pan; Maria Flytzani-Stephanopoulos; Gary W. Brudvig; Victor S. Batista; Dunwei Wang

Heterogeneous catalysts with atomically defined active centers hold great promise for high-performance applications. Among them, catalysts featuring active moieties with more than one metal atom are important for chemical reactions that require synergistic effects but are rarer than single atom catalysts (SACs). The difficulty in synthesizing such catalysts has been a key challenge. Recent progress in preparing dinuclear heterogeneous catalysts (DHCs) from homogeneous molecular precursors has provided an effective route to address this challenge. Nevertheless, only side-on bound DHCs, where both metal atoms are affixed to the supporting substrate, have been reported. The competing end-on binding mode, where only one metal atom is attached to the substrate and the other metal atom is dangling, has been missing. Here, we report the first observation that end-on binding is indeed possible for Ir DHCs supported on WO3. Unambiguous evidence supporting the binding mode was obtained by in situ diffuse reflectance infrared Fourier transform spectroscopy and high-angle annular dark-field scanning transmission electron microscopy. Density functional theory calculations provide additional support for the binding mode, as well as insights into how end-on bound DHCs may be beneficial for solar water oxidation reactions. The results have important implications for future studies of highly effective heterogeneous catalysts for complex chemical reactions.

Collaboration


Dive into the Qi Dong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge