Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qianjin Liao is active.

Publication


Featured researches published by Qianjin Liao.


Journal of Cell Science | 2011

miR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma

Min Deng; Hailin Tang; Yanhong Zhou; Ming Zhou; Wei Xiong; Ying Zheng; Qiurong Ye; Xi Zeng; Qianjin Liao; Xiaofang Guo; Xiaoling Li; Jian Ma; Guiyuan Li

MicroRNAs (miRNAs) are small noncoding RNAs that are involved in various diseases, including cancer. In the present study, we found that miR-216b was downregulated in nasopharyngeal carcinoma (NPC) cell lines and specimens. Decreased expression of miR-216b was directly related to advanced clinical stage and lymph node metastasis. miR-216b levels correlated inversely with levels of KRAS protein during nasopharyngeal tumorigenesis. Furthermore, we demonstrated that miR-216b can bind to the 3′ untranslated region (UTR) of KRAS and inhibit expression of the KRAS protein. Both in vitro and in vivo assays revealed that miR-216b attenuated NPC cell proliferation, invasion and tumor growth in nude mice. miR-216b exerts its tumor suppressor function through inhibition of the KRAS-related AKT and ERK pathways. Our findings provide, for the first time, significant clues regarding the role of miR-216b as a tumor suppressor by targeting KRAS in NPC.


PLOS ONE | 2012

Circulating miR-17, miR-20a, miR-29c, and miR-223 Combined as Non-Invasive Biomarkers in Nasopharyngeal Carcinoma

Xi Rui Zeng; Juanjuan Xiang; Minghua Wu; Wei Xiong; Hailin Tang; Min Deng; Li X; Qianjin Liao; Bo Su; Zhaohui Luo; Yanhong Zhou; Ming Zhou; Zhaoyang Zeng; Xiaoling Li; Shourong Shen; Cijun Shuai; Guiyuan Li; Jiasheng Fang; Shuping Peng

Background MicroRNAs have been considered as a kind of potential novel biomarker for cancer detection due to their remarkable stability in the blood and the characteristics of their expression profile in many diseases. Methods We performed microarray-based serum miRNA profiling on the serum of twenty nasopharyngeal carcinoma patients at diagnosis along with 20 non-cancerous individuals as controls. This was followed by a real-time quantitative Polymerase Chain Reaction (RT-qPCR) in a separate cohort of thirty patients with nasopharyngeal carcinoma and thirty age- matched non-cancerous volunteers. A model for diagnosis was established by a conversion of mathematical calculation formula which has been validated by analyzing 74 cases of patients with nasopharyngeal carcinoma and 57 cases of non-cancerous volunteers. Results The profiles showed that 39 and 17 miRNAs are exclusively expressed in the serum of non-cancerous volunteers and of patients with nasopharyngeal carcinoma respectively. 4 miRNAs including miR-17, miR-20a, miR-29c, and miR-223 were found to be expressed differentially in the serum of NPC compared with that of non-cancerous control. Based on this, a diagnosis equation with Ct difference method has been established to distinguish NPC cases and non-cancerous controls and validated with high sensitivity and specificity. Conclusions We demonstrate that the serum miRNA-based biomarker model become a novel tool for NPC detection. The circulating 4-miRNA-based method may provide a novel strategy for NPC diagnosis.


Journal of Cancer Research and Clinical Oncology | 2012

The microRNA-processing enzymes: Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma

Xiaofang Guo; Qianjin Liao; Pan Chen; Li X; Wei Xiong; Jian Ma; Xiaoling Li; Zhaohui Luo; Hailin Tang; Min Deng; Yin Zheng; Rong Wang; Wenling Zhang; Guiyuan Li

PurposeDysregulation of microRNA (miRNA) metabolism has been observed in a variety of human cancers, but the expression patterns of the enzymes responsible for generating miRNAs remain largely unexplored. In this study, we investigated the expression profiles of the two most important enzymes of the miRNA machinery, Drosha and Dicer, which were closely correlated with nasopharyngeal carcinoma (NPC) and patient survival.MethodsDicer and Drosha mRNA levels were detected by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) using 24 NPC tissues, 7 normal nasopharyngeal epithelium samples (NPE) and NPC cell lines. In addition, protein levels were detected by immunohistochemistry (IHC) using an NPC tissue microarray (TMA), which include 251 NPC and 105 NPE cases. For some NPC patients can not be contacted, the survival data were available only for 146 patients. Kaplan–Meier analysis was performed, and the chi-square and log-rank tests were used to detect significance levels using SPSS 15.0 software.ResultsThe mean level of Dicer and Drosha mRNA were significantly down-regulated in NPC tissue specimens and cell lines when compared with controls. The low levels of Dicer and Drosha protein were frequently seen in NPC, and the low expression of Dicer and Drosha protein was significantly correlated with shorter progression-free survival (PFS) and overall survival (OS) of NPC patients.ConclusionsWe observed that Drosha and Dicer expression was dysregulation in NPC compared with healthy control samples and was significantly correlated with shorter PFS and OS of NPC patients. Therefore, we hypothesise that the expression levels of Dicer and Drosha could be used as potential prognostic biomarkers for NPC.


Journal of Virology | 2012

Epstein-Barr Virus Downregulates MicroRNA 203 through the Oncoprotein Latent Membrane Protein 1: a Contribution to Increased Tumor Incidence in Epithelial Cells

Haibo Yu; Jianhong Lu; Lielian Zuo; Qijia Yan; Zhengyuan Yu; Li X; Jin Huang; Lian Zhao; Hailin Tang; Zhaohui Luo; Qianjin Liao; Zhaoyang Zeng; Junyi Zhang; Guiyuan Li

ABSTRACT The Epstein-Barr virus (EBV) is highly associated with nasopharyngeal carcinoma (NPC), and it regulates some microRNAs (miRNAs) that are involved in the development of cancer. The role of EBV in the deregulation of cellular miRNAs and how this affects the progression of NPC remain to be investigated. An analysis of the miRNA profile in an EBV-infected cell line revealed that miRNA 203 (miR-203) was downregulated. miR-203 is expressed specifically in epithelial cells. This downregulation of miR-203 was further verified and functionally analyzed. miR-203 was downregulated substantially in epithelial cells and NPC tissues that were latently infected with EBV. Downregulation of miR-203 also occurred during the early stage of EBV infection. Furthermore, the viral oncoprotein, latent membrane protein 1 (LMP1), was responsible for downregulation of miR-203. Removal of the latent EBV genome or suppression of LMP1 resulted in restoration of miR-203 expression. EBV-LMP1 mediated the downregulation of miR-203 at the primary transcript level. E2F3 and CCNG1 were identified as target genes of miR-203. Ectopic expression of miR-203 inhibited EBV-induced S-phase entry and transformation in vivo. Overexpression of the targets overcame the effects of miR-203 mimics on the cell cycle, and the expression of target genes in tumor models was inhibited by miR-203. Inhibitors of Jun N-terminal protein kinase (JNK) and NF-κB blocked miR-203 downregulation. These results imply that EBV promotes malignancy by downregulating cellular miR-203, which contributes to the etiology of NPC.


Molecular Cancer | 2017

Circular RNAs in human cancer

Yumin Wang; Yongzhen Mo; Zhaojian Gong; Xiang Yang; Mo Yang; Shanshan Zhang; Fang Xiong; Bo Xiang; Ming Zhou; Qianjin Liao; Wenling Zhang; Li X; Xiaoling Li; Yong Li; Guiyuan Li; Zhaoyang Zeng; Wei Xiong

CircRNAs are a novel type of RNAs. With the newly developed technology of next-generation sequencing (NGS), especially RNA-seq technology, over 30,000 circRNAs have already been found. Owing to their unique structure, they are more stable than linear RNAs. CircRNAs play important roles in the carcinogenesis of cancer. The expression of circRNAs is correlated with patients’ clinical characteristics, and circRNAs play a vital role in many aspects of malignant phenotypes, including cell cycle, apoptosis, vascularization, and invasion; metastasis as a RNA sponge, binding to RBP; or translation. Therefore, it is meaningful to further study the mechanism of interactions between circRNAs and tumors. The role of circRNAs as molecular markers or potential targets will provide promising application perspectives, such as early tumor diagnosis, therapeutic evaluation, prognosis prediction, and even gene therapy for tumors.


Cell Death and Disease | 2014

miR-29b suppresses tumor growth and metastasis in colorectal cancer via downregulating Tiam1 expression and inhibiting epithelial-mesenchymal transition.

Bo Wang; Wenmei Li; H Liu; Lifang Yang; Qianjin Liao; S Cui; Hui Yun Wang; Lin Zhao

Recently, the role of miR-29b in colorectal carcinoma (CRC) development appears to be controversial. Until now, the expression and function of miR-29b in CRC have not been clarified clearly. We showed that decreased expression of miR-29b usually occurred in CRC cell lines and tissue samples. Loss- and gain-of-function assays in vitro revealed suppressive effects of miR-29b on cell proliferation and migration. Endogenous overexpression of miR-29b was sufficient to suppress aggressive behavioral phenotypes in mice. Proteomic analysis showed that miR-29b involved in integrate several key biological processes. In addition, miR-29b mediated the inhibition of epithelial–mesenchymal transition (EMT) and the inactivation of mitogen-activated protein kinase and phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT signal transduction pathway. Further studies found that T lymphoma invasion and metastasis 1 (Tiam1) was identified as a direct target of miR-29b. In contrast to the phenotypes induced by miR-29b restoration, Tiam1-induced cell proliferation and migration partly rescued miR-29b-mediated biological behaviors. Our results illustrated that miR-29b as a suppressor has a critical role in CRC progression, which suggests its potential role in the molecular therapy of patients with advanced CRC.


Journal of Experimental & Clinical Cancer Research | 2017

circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a

Rongfang He; Peng Liu; Xiaoming Xie; Yujuan Zhou; Qianjin Liao; Wei Xiong; Xiaoling Li; Guiyuan Li; Zhaoyang Zeng; Hailin Tang

BackgroudAccumulating evidences indicate that circular RNAs (circRNAs), a class of non-coding RNAs, play important roles in tumorigenesis. However, the function of circRNAs in triple negative breast cancer (TNBC) is largely unknown.MethodsWe performed circRNA microarrays to identify circRNAs that are aberrantly expressed in TNBC cell lines. Expression levels of a significantly upregulated circRNA, circGFRA1, was detected by quantitative real-time PCR (qRT-PCR) in TNBC cell lines and tissues. Kaplan-Meier survival analysis was used to explore the significance of circGFRA1 in clinical prognosis. Then, we examined the functions of circGFRA1 in TNBC by cell proliferation, apoptosis and mouse xenograft assay. In addition, luciferase assay was used to explore the miRNA sponge function of circGFRA1 in TNBC.ResultsMicroarray analysis and qRT-PCR verified a circRNA termed circGFRA1 that was upregulated in TNBC. Kaplan-Meier survival analysis showed that upregulated circGFRA1 was correlated with poorer survival. Knockdown of circGFRA1 inhibited proliferation and promoted apoptosis in TNBC. Via luciferase reporter assays, circGFRA1 and GFRA1 was observed to directly bind to miR-34a. Subsequent experiments showed that circGFRA1 and GFRA1 regulated the expression of each other by sponging miR-34a.ConclusionsTaken together, we conclude that circGFRA1 may function as a competing endogenous RNA (ceRNA) to regulate GFRA1 expression through sponging miR-34a to exert regulatory functions in TNBC. circGFRA1 may be a diagnostic biomarker and potential target for TNBC therapy.


Cell Death and Disease | 2016

Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell metastasis and invasion by targeting long non-coding RNA LOC553103

Baoyu He; Weiming Li; Yingfen Wu; Fang Wei; Zhaojian Gong; H. Bo; Yumin Wang; Li X; Bo Xiang; Can Guo; Qianjin Liao; Pan Chen; Xuyu Zu; Ming Zhou; Jian Ma; Xiaoling Li; Yong Li; Guiyuan Li; Wei Xiong; Zhaoyang Zeng

Epstein-Barr virus (EBV) infection is causatively related to a variety of human cancers, including nasopharyngeal carcinoma (NPC) and gastric cancer (GC). EBV encodes 44 mature miRNAs, a number of which have been proven to promote carcinogenesis by targeting host genes or self-viral genes. However, in this study, we found that an EBV-encoded microRNA, termed EBV-miR-BART6-3p, inhibited EBV-associated cancer cell migration and invasion including NPC and GC by reversing the epithelial–mesenchymal transition (EMT) process. Using microarray analysis, we identified and validated that a novel long non-coding RNA (lncRNA) LOC553103 was downregulated by EBV-miR-BART6-3p, and LOC553103 knockdown by specific siRNAs phenocopied the effect of EBV-miR-BART6-3p, while LOC553103 overexpression promoted cancer cell migration and invasion to facilitate EMT. In conclusion, we determined that EBV-miR-BART6-3p, a microRNA encoded by oncogenic EBV, inhibited EBV-associated cancer cell migration and invasion by targeting and downregulating a novel lncRNA LOC553103. Thus, our study presents an unreported mechanism underlying EBV infection in EBV-associated cancer carcinogenesis, and provides a potential novel diagnosis and treatment biomarker for NPC and other EBV-related cancers.


PLOS ONE | 2013

LPLUNC1 Inhibits Nasopharyngeal Carcinoma Cell Growth via Down-Regulation of the MAP Kinase and Cyclin D1/E2F Pathways

Yixin Yang; Qianjin Liao; Fang Wei; Xiaoling Li; Wenling Zhang; Songqing Fan; Lei Shi; Li X; Zhaojian Gong; Jian Ma; Ming Zhou; Juanjuan Xiang; Shuping Peng; Bo Xiang; Hao Deng; Yun-Bo Yang; Yong Li; Wei Xiong; Zhaoyang Zeng; Guiyuan Li

Long-palate, lung and nasal epithelium clone 1 (LPLUNC1) gene expression is relatively tissue specific. It is highly expressed in nontumor nasopharyngeal epithelial tissues, but its expression is reduced in nasopharyngeal carcinoma (NPC), indicating that LPLUNC1 may be associated with the tumorigenesis of NPC. To study the effects of LPLUNC1 on NPC tumorigenesis, a full-length LPLUNC1 expression plasmid was stably transfected into the NPC cell line, 5-8F. Our data indicated that LPLUNC1 inhibited NPC cell proliferation in vitro and tumor formation in vivo. LPLUNC1 also delayed cell cycle progression from G1 to S phase and inhibited the expression of cyclin D1, cyclin-dependent kinase 4 (CDK4) and phosphorylated Rb. To further investigate the molecular mechanisms underlying the suppressive effects of LPLUNC1 on NPC tumorigenesis, cDNA microarray was performed. These studies revealed that LPLUNC1 inhibited the expression of certain mitogen-activated protein (MAP) kinases (MAPK) kinases and cell cycle-related molecules. Western blotting confirmed that the expression of MEK1, phosphorylated ERK1/2, phosphorylated JNK1/2, c-Myc and c-Jun were inhibited by LPLUNC1. Furthermore, the transcriptional activity of AP-1 was down-regulated by LPLUNC1, suggesting that the MAPK signaling pathway is regulated by LPLUNC1. Taken together, the present study indicates that LPLUNC1 delays NPC cell growth by inhibiting the MAPK and cyclin D1/E2F pathways and suggests that LPLUNC1 may represent a promising candidate tumor suppressor gene associated with NPC.


Journal of Cancer | 2017

Upregulated long non-coding RNA LINC00152 expression is associated with progression and poor prognosis of tongue squamous cell carcinoma

Jianjun Yu; Yan Liu; Can Guo; Shanshan Zhang; Zhaojian Gong; Yanyan Tang; Liting Yang; Yi He; Yu Lian; Li X; Hao Deng; Qianjin Liao; Xiaoling Li; Yong Li; Guiyuan Li; Zhaoyang Zeng; Wei Xiong; Xinming Yang

Altered expression of long non-coding RNAs (lncRNAs) associated with human carcinogenesis and might be used as diagnosis and prognosis biomarkers. However, the expression of lncRNAs in tongue squamous cell carcinoma (TSCC) and their relevance on the diagnosis, progression and prognosis of TSCC have not been thoroughly elucidated. To discover novel TSCC-related lncRNAs, we analyzed the lncRNA expression patterns in two sets of previously published TSCC gene expression profile data (GSE30784 and GSE9844), and found that long intergenic non-coding RNA 152 (LINC00152) was significantly upregulated in TSCC samples. We then detected LINC00152 expression in two other cohorts of TSCC samples. Quantitative Real time PCR (qRT-PCR) results indicated that LINC00152 was highly expressed in 15 primary TSCC biopsies when compared with 14 adjacent non-tumor tongue squamous cell epithelium samples. The expression of LINC00152 was also measured in 182 paraffin-embedded human TSCC tissues by in situ hybridization, increased expression of LINC00152 was significantly correlated with TSCC progression, such as T stage (p = 0.009), N stage (p = 0.036), TNM stage (p = 0.017), and associated with relapse (p < 0.001), and invasion (p < 0.001). Kaplan-Meier analysis demonstrated that increased LINC00152 expression contributed to both poor overall survival (p = 0.006) and disease-free survival (p = 0.007) of TSCC patients. These findings suggest that LINC00152 might serve as a potential biomarker for early detection and prognosis prediction of TSCC.

Collaboration


Dive into the Qianjin Liao's collaboration.

Top Co-Authors

Avatar

Guiyuan Li

Central South University

View shared research outputs
Top Co-Authors

Avatar

Xiaoling Li

Central South University

View shared research outputs
Top Co-Authors

Avatar

Wei Xiong

Central South University

View shared research outputs
Top Co-Authors

Avatar

Li X

Central South University

View shared research outputs
Top Co-Authors

Avatar

Zhaoyang Zeng

Central South University

View shared research outputs
Top Co-Authors

Avatar

Ming Zhou

Central South University

View shared research outputs
Top Co-Authors

Avatar

Wenling Zhang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Bo Xiang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Zhaojian Gong

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Yong Li

Cleveland Clinic Lerner Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge