Qianyong Zhang
Third Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qianyong Zhang.
Autophagy | 2013
Mingliang Chen; Long Yi; Xin Jin; Xinyu Liang; Yong Zhou; Ting Zhang; Qi Xie; Xi Zhou; Hui Chang; Yu-jie Fu; Jundong Zhu; Qianyong Zhang; Mantian Mi
Inflammation participates centrally in all stages of atherosclerosis (AS), which begins with inflammatory changes in the endothelium, characterized by expression of the adhesion molecules. Resveratrol (RSV) is a naturally occurring phytoalexin that can attenuate endothelial inflammation; however, the exact mechanisms have not been thoroughly elucidated. Autophagy refers to the normal process of cell degradation of proteins and organelles, and is protective against certain inflammatory injuries. Thus, we intended to determine the role of autophagy in the antiinflammatory effects of RSV in human umbilical vein endothelial cells (HUVECs). We found that RSV pretreatment reduced tumor necrosis factor α (TNF/TNFα)-induced inflammation and increased MAP1LC3B2 (microtubule-associated protein 1 light chain 3 β 2) expression and SQSTM1/p62 (sequestosome 1) degradation in a concentration-dependent manner. A bafilomycin A1 (BafA1) challenge resulted in further accumulation of MAP1LC3B2 in HUVECs. Furthermore, autophagy inhibitors 3-methyladenine (3-MA), chloroquine as well as ATG5 and BECN1 siRNA significantly attenuated RSV-induced autophagy, which, subsequently, suppressed the downregulation of RSV-induced inflammatory factors expression. RSV also increased cAMP (cyclic adenosine monophosphate) content, the expression of PRKA (protein kinase A) and SIRT1 (sirtuin 1), as well as the activity of AMPK (AMP-activated protein kinase). RSV-induced autophagy in HUVECs was abolished in the presence of inhibitors of ADCY (adenylyl cyclase, KH7), PRKA (H-89), AMPK (compound C), or SIRT1 (nicotinamide and EX-527), as well as ADCY, PRKA, AMPK, and SIRT1 siRNA transfection, indicating that the effects of RSV on autophagy induction were dependent on cAMP, PRKA, AMPK and SIRT1. In conclusion, RSV attenuates endothelial inflammation by inducing autophagy, and the autophagy in part was mediated through the activation of the cAMP-PRKA-AMPK-SIRT1 signaling pathway.
Brain Research | 2009
Ka Chen; Qianyong Zhang; Jian Wang; Fengjin Liu; Mantian Mi; Hongxia Xu; Fang Chen; Kaihong Zeng
Hypoxia-induced apoptosis of retinal ganglion cells (RGCs) is the major cause of progressive vision loss in numerous retinal diseases, including glaucoma and diabetic retinopathy. Taurine is a naturally occurring free amino acid that has been shown to have neurotrophic and neuroprotective properties in the retina. We investigated the specific potential for taurine to be protective for immortalized rat retinal ganglion cells (RGC-5) exposed to hypoxia (5% O(2)). Pretreatment of RGC-5 cells with 0.1 mM taurine significantly reduced the extent of apoptosis detected by DAPI staining, MTT, and Annexin V-FITC/PI assays. To further study the mechanism underlying the beneficial effect of taurine, interactions between taurine and the process of mitochondria-mediated apoptosis were examined. Taurine treatment of RGC-5 cells suppressed the induction of the mitochondrial permeability transition (mPT) by reducing intracellular calcium levels and inhibiting the opening of mitochondrial permeability transition pores (mPTPs). Moreover, the loss of mitochondrial membrane potential, a decline in cellular ATP levels, a reduction in the amount of cytochrome c translocated to the cytoplasm and caspase-3 activation were observed in taurine-treated cultures. These results demonstrate the potential for taurine to protect RGCs against hypoxic damage in vivo by preventing mitochondrial dysfunction.
Digestive and Liver Disease | 2015
Shihui Chen; Xiaolan Zhao; Li Ran; Jing Wan; Xiaofang Wang; Yu Qin; Furong Shu; Yanxiang Gao; Lijia Yuan; Qianyong Zhang; Mantian Mi
BACKGROUND Non-alcoholic fatty liver disease is a major health problem worldwide. Resveratrol is a natural polyphenol found in edible plants that has a variety of biochemical and physiological effects. AIMS To evaluate the effect of resveratrol on insulin resistance, glucose and lipid metabolism in non-alcoholic fatty liver disease. METHODS Double-blind, randomized, placebo-controlled trial: 60 subjects with non-alcoholic fatty liver disease were given 2 placebo capsules (placebo group) or 2 150mg resveratrol capsules (resveratrol group) twice daily for three months. Liver ultrasound imaging, anthropometric profile, serum liver enzymes, insulin, glucose, C-peptide, lipid profile, and inflammation-related cytokines were compared pre and post-treatment. RESULTS Compared with the placebo group, resveratrol significantly decreased aspartate aminotransferase, glucose and low-density lipoprotein cholesterol [-6.00 (-9.00, -3.00) IU/L, -0.64±0.31mmol/L, and -0.41±0.35mmol/L, respectively, P≤0.001] alanine aminotransferase, total cholesterol [-7.00 (-11.0, -2.50) IU/L and -0.67±0.50mmol/L, respectively, P=0.002], and homeostasis model assessment insulin resistance index (-0.60±1.15, P=0.016). In the resveratrol group significant reductions of the levels of tumour necrosis factor-alpha, cytokeratin 18 fragment, and fibroblast growth factor 21 [-0.53±1.30pg/mL, -26.9 (-70.3, 5.12) IU/L and -23.3 (-43.0, 0.31) pg/mL, respectively, P<0.05] and elevation of adiponectin level [1.22 (-0.37, 1.60) ng/mL, P=0.025] were observed. CONCLUSION Resveratrol supplementation may benefit patients with non-alcoholic fatty liver disease.
Genes, Chromosomes and Cancer | 2014
Qi Xie; Qian Bai; Ling-Yun Zou; Qianyong Zhang; Yong Zhou; Hui Chang; Long Yi; Jundong Zhu; Mantian Mi
It has been previously demonstrated that genistein exhibits anticancer activity against breast cancer. However, the precise mechanisms underlying the anticancer effect of genistein, in particular the epigenetic basis, remain unclear. In this study, we investigated whether genistein could modulate the DNA methylation status and expression of cancer‐related genes in breast cancer cells. We treated MCF‐7 and MDA‐MB‐231 human breast cancer cells with genistein in vitro. We found that genistein decreased the levels of global DNA methylation, DNA methyltransferase (DNMT) activity and expression of DNMT1. Yet, the expression of DNMT3A and DNMT3B showed no significant change. Using molecular modeling, we observed that genistein might directly interact with the catalytic domain of DNMT1, thus competitively inhibiting the binding of hemimethylated DNA to the catalytic domain of DNMT1. Furthermore, genistein decreased DNA methylation in the promoter region of multiple tumor suppressor genes (TSGs) such as ataxia telangiectasia mutated (ATM), adenomatous polyposis coli (APC), phosphatase and tensin homolog (PTEN), mammary serpin peptidase inhibitor (SERPINB5), and increased the mRNA expression of these genes. However, we detected no significant changes in the DNA methylation status or mRNA expression of stratifin (SFN). These results suggest that the anticancer effect of genistein on breast cancer may be partly due to its ability to demethylate and reactivate methylation‐silenced TSGs through direct interaction with the DNMT1 catalytic domain and inhibition of DNMT1 expression.
Mbio | 2016
Mingliang Chen; Long Yi; Yong Zhang; Xi Zhou; Li Ran; Jining Yang; Jundong Zhu; Qianyong Zhang; Mantian Mi
ABSTRACT The gut microbiota is found to be strongly associated with atherosclerosis (AS). Resveratrol (RSV) is a natural phytoalexin with anti-AS effects; however, its mechanisms of action remain unclear. Therefore, we sought to determine whether the anti-AS effects of RSV were related to changes in the gut microbiota. We found that RSV attenuated trimethylamine-N-oxide (TMAO)-induced AS in ApoE−/− mice. Meanwhile, RSV decreased TMAO levels by inhibiting commensal microbial trimethylamine (TMA) production via gut microbiota remodeling in mice. Moreover, RSV increased levels of the genera Lactobacillus and Bifidobacterium, which increased the bile salt hydrolase activity, thereby enhancing bile acid (BA) deconjugation and fecal excretion in C57BL/6J and ApoE−/− mice. This was associated with a decrease in ileal BA content, repression of the enterohepatic farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) axis, and increased cholesterol 7a-hydroxylase (CYP7A1) expression and hepatic BA neosynthesis. An FXR antagonist had the same effect on FGF15 and CYP7A1 expression as RSV, while an FXR agonist abolished RSV-induced alterations in FGF15 and CYP7A1 expression. In mice treated with antibiotics, RSV neither decreased TMAO levels nor increased hepatic BA synthesis. Additionally, RSV-induced inhibition of TMAO-caused AS was also markedly abolished by antibiotics. In conclusion, RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling, and the BA neosynthesis was partially mediated through the enterohepatic FXR-FGF15 axis. IMPORTANCE Recently, trimethylamine-N-oxide (TMAO) has been identified as a novel and independent risk factor for promoting atherosclerosis (AS) partially through inhibiting hepatic bile acid (BA) synthesis. The gut microbiota plays a key role in the pathophysiology of TMAO-induced AS. Resveratrol (RSV) is a natural phytoalexin with prebiotic benefits. A growing body of evidence supports the hypothesis that phenolic phytochemicals with poor bioavailability are possibly acting primarily through remodeling of the gut microbiota. The current study showed that RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling. And RSV-induced hepatic BA neosynthesis was partially mediated through downregulating the enterohepatic farnesoid X receptor-fibroblast growth factor 15 axis. These results offer new insights into the mechanisms responsible for RSV’s anti-AS effects and indicate that the gut microbiota may become an interesting target for pharmacological or dietary interventions to decrease the risk of developing cardiovascular diseases. Recently, trimethylamine-N-oxide (TMAO) has been identified as a novel and independent risk factor for promoting atherosclerosis (AS) partially through inhibiting hepatic bile acid (BA) synthesis. The gut microbiota plays a key role in the pathophysiology of TMAO-induced AS. Resveratrol (RSV) is a natural phytoalexin with prebiotic benefits. A growing body of evidence supports the hypothesis that phenolic phytochemicals with poor bioavailability are possibly acting primarily through remodeling of the gut microbiota. The current study showed that RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling. And RSV-induced hepatic BA neosynthesis was partially mediated through downregulating the enterohepatic farnesoid X receptor-fibroblast growth factor 15 axis. These results offer new insights into the mechanisms responsible for RSV’s anti-AS effects and indicate that the gut microbiota may become an interesting target for pharmacological or dietary interventions to decrease the risk of developing cardiovascular diseases.
Pharmacological Research | 2015
Shihui Chen; Xiaolan Zhao; Jing Wan; Li Ran; Yu Qin; Xiaofang Wang; Yanxiang Gao; Furong Shu; Yong Zhang; Peng Liu; Qianyong Zhang; Jundong Zhu; Mantian Mi
Ampelopsis grossedentata, a medicinal and edible plant, has been widely used in China for hundreds of years, and dihydromyricetin is the main active ingredient responsible for its various biological actions. We investigated the effects of dihydromyricetin on glucose and lipid metabolism, inflammatory mediators and several biomarkers in nonalcoholic fatty liver disease. In a double-blind clinical trial, sixty adult nonalcoholic fatty liver disease patients were randomly assigned to receive either two dihydromyricetin or two placebo capsules (150 mg) twice daily for three months. The serum levels of alanine, aspartate aminotransferase, γ-glutamyl transpeptidase, glucose, low-density lipoprotein-cholesterol and apolipoprotein B, and the homeostasis model assessment of insulin resistance (HOMA-IR) index were significantly decreased in the dihydromyricetin group compared with the placebo group. In the dihydromyricetin group, the serum levels of tumor necrosis factor-alpha, cytokeratin-18 fragment and fibroblast growth factor 21 were decreased, whereas the levels of serum adiponectin were increased at the end of the study. We conclude that dihydromyricetin supplementation improves glucose and lipid metabolism as well as various biochemical parameters in patients with nonalcoholic fatty liver disease, and the therapeutic effects of dihydromyricetin are likely attributable to improved insulin resistance and decreases in the serum levels of tumor necrosis factor-alpha, cytokeratin-18, and fibroblast growth factor 21.
Archives of Pharmacal Research | 2008
Hui Chang; Mantian Mi; Wenhua Ling; Jundong Zhu; Qianyong Zhang; Na Wei; Yong Zhou; Yong Tang; Jialin Yuan
Flavonoids exist extensively in the human diet, and a variety of health effects have been ascribed to them. The cytotoxic effects of 23 flavonoids on breast cancer cells (MDA-MB-231 and MCF-7), colorectal carcinoma cells (LoVo and DLD-1) and prostatic cancer cells (PC3) were investigated. By comparing the cytotoxicity (EC50) of selected molecules that differ in only one structure element, we identified several structural properties associated with enhanced cytotoxicity, including the presence of the 2,3-double bond, appropriate hydroxyl numbers, 3-OH, 6-OH and ortho-hydroxylation in ring B. Flavonoids with a 5-OH exhibited lower cytotoxicity than their non-hydroxylated counterparts. Results indicated that 3,6-dihydroxylflavone showed the most potent cytotoxic effect on these cancer cells. The appearance of apoptotic cells with DAPI staining was observed in cancer cells under 3,6-dihydroxylflavone treatment, and the apoptosis analysis by flow cytometry also showed that 3,6-dihydroxylflavone induced apoptotic cell death in these cancer cells. These results revealed the structurally related toxicity of flavonoids on human cancer cells, and indicates that 3,6-dihydroxylflavone is an active compound worthy of development for cancer chemotherapy.
Molecular Nutrition & Food Research | 2015
Yong Zhang; Mingliang Chen; Yong-Ning Zhou; Long Yi; Yanxiang Gao; Li-Yuan Ran; Shi-Hui Chen; Ting-Ting Zhang; Xi Zhou; Dan Zou; Bin Wu; Ying Wu; Hui Chang; Jundong Zhu; Qianyong Zhang; Mantian Mi
SCOPE Resveratrol (RSV), a natural polyphenol, has been reported to attenuate nonalcoholic fatty liver disease (NAFLD); however, its underlying mechanism is unclear. Autophagy was recently identified as a critical protective mechanism during NAFLD development. Therefore, we investigated the role of autophagy in the beneficial effects of RSV on hepatic steatosis. METHODS AND RESULTS Via Oil red O staining, triglyceride, and β-hydroxybutyrate detection, we found that RSV decreased palmitate-induced lipid accumulation and stimulated fatty acid β-oxidation in hepatocytes. Based on Western blot assay, confocal microscopy and transmission electron microscopy, we found that RSV induced autophagy in hepatocytes, whereas autophagy inhibition markedly abolished RSV-mediated hepatic steatosis improvement. Moreover, RSV increased cAMP levels and the levels of SIRT1 (sirtuin 1), pPRKA (phosphorylated protein kinase A), and pAMPK (phosphorylated AMP-activated protein kinase), as well as SIRT1 activity in HepG2 cells. Incubation with inhibitors of AC (adenylyl cyclase), PRKA, AMPK, SIRT1, or with AC, PRKA, AMPK, or SIRT1 siRNA abolished RSV-mediated autophagy. Similar results were obtained in mice with hepatic steatosis. CONCLUSION RSV improved hepatic steatosis partially by inducing autophagy via the cAMP-PRKA-AMPK-SIRT1 signaling pathway, which provides new evidence regarding RSVs effects on NAFLD treatment.
British Journal of Nutrition | 2013
Ting Zhang; Fan Wang; Hongxia Xu; Long Yi; Yu Qin; Hui Chang; Mantian Mi; Qianyong Zhang
We investigate the cytoprotective effects and the molecular mechanism of genistein in oxidative stress-induced injury using an endothelial cell line (EA.hy926). An oxidative stress model was established by incubating endothelial cells with H₂O₂. According to the present results, genistein pretreatment protected endothelial cells against H₂O₂-induced decreases in cell viability and increases in apoptosis. Genistein also prevented the inhibition of B-cell lymphoma 2 and the activation of caspase-3 induced by H₂O₂. Genistein increased superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) levels and attenuated the decrease in these antioxidants during oxidative stress. We also found that genistein induced the promoter activity of both nuclear factor erythroid 2-related factor 2 (Nrf2) and PPARγ. Additionally, genistein induced the nuclear translocation of Nrf2 and PPARγ. While genistein caused the up-regulation of both Nrf2 and PPARγ, it also activated and up-regulated the protein expression and transcription of a downstream protein, haem oxygenase-1 (HO-1). Moreover, the use of Nrf2 small interfering RNA transfection and HO-1- or PPARγ-specific antagonists (Znpp and GW9662, respectively) blocked the protective effects of genistein on endothelial cell viability during oxidative stress. Therefore, we conclude that oxidative stress-induced endothelial cell injury can be attenuated by treatment with genistein, which functions via the regulation of the Nrf2 and PPARγ signalling pathway. Additionally, the endogenous antioxidants SOD, CAT and GSH appear to play a role in the antioxidant activity of genistein. The present findings suggest that the beneficial effects of genistein involving the activation of cytoprotective antioxidant genes may represent a novel strategy in the prevention and treatment of cardiovascular endothelial damage.
Molecular and Cellular Endocrinology | 2015
Linying Shi; Ting Zhang; Xinyu Liang; Qin Hu; Juan Huang; Yong Zhou; Mingliang Chen; Qianyong Zhang; Jundong Zhu; Mantian Mi
Skeletal muscle insulin resistance (SMIR) plays an important role in the pathogenesis of type 2 diabetes. Dihydromyricetin (DHM), a natural flavonoid, exerts various bioactivities including anti-oxidative and hepatoprotective effects. Herein, we intended to determine the effect of DHM on SMIR and the underlying mechanisms. We found that DHM increased the expression of phosphorylated insulin receptor substrate-1, phosphorylated Akt and glucose uptake capacity in palmitate-treated L6 myotubes under insulin-stimulated conditions. The expression of light chain 3, Beclin 1, autophagy-related gene 5 (Atg5), the degradation of sequestosome 1 and the formation of autophagosomes were also upregulated by DHM. Suppression of autophagy by 3-methyladenine and bafilomycin A1 or Atg5 and Beclin1 siRNA abolished the favorable effects of DHM on SMIR. Furthermore, DHM increased the levels of phosphorylated AMP-activated protein kinase (AMPK) and Ulk1, and decreased phosphorylated mTOR levels. AMPK inhibitor compound C (CC) and AMPK siRNA abrogated DHM-induced autophagy, subsequently suppressed DHM-induced SMIR improvement. Additionally, DHM inhibited the activity of F1F0-ATPase thereby activating AMPK. Finally, the results of in vivo study conducted in high fat diet-fed rats were consistent with the findings of in vitro study. In conclusion, DHM improved SMIR by inducing autophagy via the activation of AMPK signaling pathway.