Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiaoping Yuan is active.

Publication


Featured researches published by Qiaoping Yuan.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000

C. Robin Buell; Vinita Joardar; Magdalen Lindeberg; Jeremy D. Selengut; Ian T. Paulsen; Michelle L. Gwinn; Robert J. Dodson; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; Sean C. Daugherty; Lauren M. Brinkac; Maureen J. Beanan; Daniel H. Haft; William C. Nelson; Tanja Davidsen; Nikhat Zafar; Liwei Zhou; Jia Liu; Qiaoping Yuan; Hoda Khouri; Nadia Fedorova; Bao Tran; Daniel Russell; Kristi Berry; Teresa Utterback; Susan Van Aken; Tamara Feldblyum; Mark D'Ascenzo

We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.


Plant Physiology | 2005

The Institute for Genomic Research Osa1 Rice Genome Annotation Database

Qiaoping Yuan; Shu Ouyang; Aihui Wang; Wei Zhu; Rama Maiti; Haining Lin; John P. Hamilton; Brian J. Haas; Razvan Sultana; Foo Cheung; Jennifer R. Wortman; C. Robin Buell

We have developed a rice (Oryza sativa) genome annotation database (Osa1) that provides structural and functional annotation for this emerging model species. Using the sequence of O. sativa subsp. japonica cv Nipponbare from the International Rice Genome Sequencing Project, pseudomolecules, or virtual contigs, of the 12 rice chromosomes were constructed. Our most recent release, version 3, represents our third build of the pseudomolecules and is composed of 98% finished sequence. Genes were identified using a series of computational methods developed for Arabidopsis (Arabidopsis thaliana) that were modified for use with the rice genome. In release 3 of our annotation, we identified 57,915 genes, of which 14,196 are related to transposable elements. Of these 43,719 nontransposable element-related genes, 18,545 (42.4%) were annotated with a putative function, 5,777 (13.2%) were annotated as encoding an expressed protein with no known function, and the remaining 19,397 (44.4%) were annotated as encoding a hypothetical protein. Multiple splice forms (5,873) were detected for 2,538 genes, resulting in a total of 61,250 gene models in the rice genome. We incorporated experimental evidence into 18,252 gene models to improve the quality of the structural annotation. A series of functional data types has been annotated for the rice genome that includes alignment with genetic markers, assignment of gene ontologies, identification of flanking sequence tags, alignment with homologs from related species, and syntenic mapping with other cereal species. All structural and functional annotation data are available through interactive search and display windows as well as through download of flat files. To integrate the data with other genome projects, the annotation data are available through a Distributed Annotation System and a Genome Browser. All data can be obtained through the project Web pages at http://rice.tigr.org.


BMC Biology | 2005

The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications

Nathalie Choisne; Nadia Demange; Gisela Orjeda; Sylvie Samain; Angélique D'Hont; Laurence Cattolico; Eric Pelletier; Arnaud Couloux; Béatrice Segurens; Patrick Wincker; Claude Scarpelli; Jean Weissenbach; Marcel Salanoubat; Nagendra K. Singh; T. Mohapatra; T. R. Sharma; Kishor Gaikwad; Archana Singh; Vivek Dalal; Subodh K. Srivastava; Anupam Dixit; Ajit K. Pal; Irfan Ahmad Ghazi; Mahavir Yadav; Awadhesh Pandit; Ashutosh Bhargava; K. Sureshbabu; Rekha Dixit; Harvinder Singh; Suresh C. Swain

Rice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals. We have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes. Because the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested.BackgroundRice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals.ResultsWe have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes.ConclusionBecause the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested.


PLOS ONE | 2008

Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy.

Ki Hong Jung; Christopher Dardick; Laura E. Bartley; Peijian Cao; Jirapa Phetsom; Patrick E. Canlas; Young Su Seo; Michael A. Shultz; Shu Ouyang; Qiaoping Yuan; Bryan Frank; Eugene Ly; Li Zheng; Yi Jia; An-Ping Hsia; Kyungsook An; Hui Hsien Chou; David M. Rocke; Geun Cheol Lee; Gynheung An; C. Robin Buell; Pamela C. Ronald

Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice (Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy. To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and validated the biological significance of the data by analyzing sources of variation and confirming expression trends with reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally, we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice functional genomics.


Proceedings of the Fifth International Rice Genetics Symposium | 2007

Annotation of the rice genome

Shu Ouyang; Wei Zhu; John P. Hamilton; Haining Lin; Matthew Campbell; Yuandan Lee; Rl Malek; Aihui Wang; Qiaoping Yuan; Brian J. Haas; Jennifer R. Wortman; C.R. Buell

A high-quality finished sequence of the rice genome was completed in 2005. However, to maximally use the sequences, quality annotation of the genes and genome features is necessary. The process of annotation is iterative in nature and requires the application and refinement of computational tools coupled with manual curation and evalutation. We are funded by the U.S. National Science Foundation to annotate the rice genome and have constructed pseudomolecules for the 12 Oryza sativa subspecies japonica var. Nipponbare chromosomes, which are publicly available through our project Web site (http://rice.tigr.org). We identified genes, gene models, and other annotation features in the rice genome. We expanded our annotation features to include a rice transcript assembly and its alignment with the rice genome, small noncoding RNAs, simple sequence repeats, as well as single nucleotide polymorphisms and insertions/deletions based on alignment with the indica subspecies. We updated our Oryza repeat database, which has allowed us to better quantify the repetitive sequences within the rice genome, which total 29% of the genome. To assist users in accessing the genome and our annotation, we expanded the content and functions of our Rice Genome Browser such that it supports 37 annotation tracks and data downloads of the underlying annotation data in various formats.


Genetics | 2003

Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres.

Kiyotaka Nagaki; Junqi Song; Robert M. Stupar; Alexander S. Parokonny; Qiaoping Yuan; Shu Ouyang; Jia Liu; Joseph Hsiao; Kristine M. Jones; R. Kelly Dawe; C. Robin Buell; Jiming Jiang


Nucleic Acids Research | 2003

The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists

Qiaoping Yuan; Shu Ouyang; Jia Liu; Bernard B. Suh; Foo Cheung; Razvan Sultana; Daniel Lee; John Quackenbush; C. Robin Buell


Genome Research | 2005

Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species

C. Robin Buell; W. Richard McCombie; Rod A. Wing; Qiaoping Yuan; Shu Ouyang; Jia Liu; Wei Zhu; Aihui Wang; Rama Maiti; Brian J. Haas; Jennifer R. Wortman; Mihaela Pertea; Kristine M. Jones; Mary Kim; Larry Overton; Tamara Tsitrin; Douglas W. Fadrosh; Jayati Bera; Jayati Weaver; Shaohua Jin; Shivani Johri; Matt Reardon; Kristen Webb; Jessica Hill; Kelly S. Moffat; Luke J. Tallon; Susan Van Aken; Matthew Lewis; Teresa Utterback; Tamara Feldblyum


Plant Physiology | 2001

Rice Bioinformatics. Analysis of Rice Sequence Data and Leveraging the Data to Other Plant Species

Qiaoping Yuan; John Quackenbush; Razvan Sultana; Mihaela Pertea; C. R. Buell


Nucleic Acids Research | 2000

Anchoring of rice BAC clones to the rice genetic map in silico

Qiaoping Yuan; Feng Liang; Joseph Hsiao; Victoria Zismann; Maria Ines Benito; John Quackenbush; Rod A. Wing; Robin Buell

Collaboration


Dive into the Qiaoping Yuan's collaboration.

Top Co-Authors

Avatar

C. Robin Buell

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Shu Ouyang

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Jia Liu

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Zhu

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Foo Cheung

J. Craig Venter Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge