Qiaoyan Wang
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qiaoyan Wang.
Nature | 2014
Daniel W. Bellott; Jennifer F. Hughes; Helen Skaletsky; Laura G. Brown; Ting-Jan Cho; Natalia Koutseva; Sara Zaghlul; Tina Graves; Susie Rock; Colin Kremitzki; Robert S. Fulton; Shannon Dugan; Yan Ding; Donna Morton; Ziad Khan; Lora Lewis; Christian Buhay; Qiaoyan Wang; Jennifer Watt; Michael Holder; Sandy Lee; Lynne V. Nazareth; Jessica Alföldi; Steve Rozen; Donna M. Muzny; Wesley C. Warren; Richard A. Gibbs; Richard Wilson; David C. Page
The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X–Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner’s syndrome and in phenotypic differences between the sexes in health and disease.
BMC Microbiology | 2007
Sarah K. Highlander; Kristina G. Hulten; Xiang Qin; Huaiyang Jiang; Shailaja Yerrapragada; Edward O. Mason; Yue Shang; Tiffany M. Williams; Régine M Fortunov; Yamei Liu; Okezie Igboeli; Joseph F. Petrosino; Madhan R. Tirumalai; Akif Uzman; George E. Fox; Ana Maria Cardenas; Donna M. Muzny; Lisa Hemphill; Yan Ding; Shannon Dugan; Peter R Blyth; Christian Buhay; Huyen Dinh; Alicia Hawes; Michael Holder; Christie Kovar; Sandra L. Lee; Wen Liu; Lynne V. Nazareth; Qiaoyan Wang
BackgroundCommunity acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear.ResultsWe sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Childrens Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified.ConclusionUSA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.
Nature | 2012
Jennifer F. Hughes; Helen Skaletsky; Laura G. Brown; Tina Graves; Robert S. Fulton; Shannon Dugan; Yan Ding; Christian Buhay; Colin Kremitzki; Qiaoyan Wang; Hua Shen; Michael Holder; Donna Villasana; Lynne V. Nazareth; Andrew Cree; Laura Courtney; Joelle Veizer; Holland Kotkiewicz; Ting-Jan Cho; Natalia Koutseva; Steve Rozen; Donna M. Muzny; Wesley C. Warren; Richard A. Gibbs; Richard Wilson; David C. Page
The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200–300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes’ genes owing to genetic decay. This evolutionary decay was driven by a series of five ‘stratification’ events. Each event suppressed X–Y crossing over within a chromosome segment or ‘stratum’, incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1–4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection.
Journal of Bacteriology | 2006
Jason Gioia; Xiang Qin; Huaiyang Jiang; Kenneth D. Clinkenbeard; Reggie Y.C. Lo; Yamei Liu; George E. Fox; Shailaja Yerrapragada; Michael P. McLeod; Thomas Z. McNeill; Lisa Hemphill; Erica Sodergren; Qiaoyan Wang; Donna M. Muzny; Farah J. Homsi; George M. Weinstock; Sarah K. Highlander
The draft genome sequence of Mannheimia haemolytica A1, the causative agent of bovine respiratory disease complex (BRDC), is presented. Strain ATCC BAA-410, isolated from the lung of a calf with BRDC, was the DNA source. The annotated genome includes 2,839 coding sequences, 1,966 of which were assigned a function and 436 of which are unique to M. haemolytica. Through genome annotation many features of interest were identified, including bacteriophages and genes related to virulence, natural competence, and transcriptional regulation. In addition to previously described virulence factors, M. haemolytica encodes adhesins, including the filamentous hemagglutinin FhaB and two trimeric autotransporter adhesins. Two dual-function immunoglobulin-protease/adhesins are also present, as is a third immunoglobulin protease. Genes related to iron acquisition and drug resistance were identified and are likely important for survival in the host and virulence. Analysis of the genome indicates that M. haemolytica is naturally competent, as genes for natural competence and DNA uptake signal sequences (USS) are present. Comparison of competence loci and USS in other species in the family Pasteurellaceae indicates that M. haemolytica, Actinobacillus pleuropneumoniae, and Haemophilus ducreyi form a lineage distinct from other Pasteurellaceae. This observation was supported by a phylogenetic analysis using sequences of predicted housekeeping genes.
Nature | 2006
Steven E. Scherer; Donna M. Muzny; Christian Buhay; Rui Chen; Andrew Cree; Yan Ding; Shannon Dugan-Rocha; Rachel Gill; Preethi H. Gunaratne; R. Alan Harris; Alicia Hawes; Judith Hernandez; Anne Hodgson; Jennifer Hume; Andrew R. Jackson; Ziad Khan; Christie Kovar-Smith; Lora Lewis; Ryan J. Lozado; Michael L. Metzker; Aleksandar Milosavljevic; George Miner; Kate Montgomery; Margaret Morgan; Lynne V. Nazareth; Graham Scott; Erica Sodergren; Xing Zhi Song; David Steffen; Ruth C. Lovering
Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing ∼4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.
Molecular Genetics & Genomic Medicine | 2016
Philip M. Boone; Bo Yuan; Shen Gu; Zhiwei Ma; Tomasz Gambin; Claudia Gonzaga-Jauregui; Mahim Jain; Todd J. Murdock; Janson J. White; Shalini N. Jhangiani; Kimberly Walker; Qiaoyan Wang; Donna M. Muzny; Richard A. Gibbs; J. Fielding Hejtmancik; James R. Lupski; Jennifer E. Posey; Richard Alan Lewis
Juvenile‐onset cataracts are known among the Hutterites of North America. Despite being identified over 30 years ago, this autosomal recessive condition has not been mapped, and the disease gene is unknown.
Nature | 2014
Daniel W. Bellott; Jennifer F. Hughes; Helen Skaletsky; Laura G. Brown; Ting-Jan Cho; Natalia Koutseva; Sara Zaghlul; Tina Graves; Susie Rock; Colin Kremitzki; Robert S. Fulton; Shannon Dugan; Yan Ding; Donna Morton; Ziad Khan; Lora Lewis; Christian Buhay; Qiaoyan Wang; Jennifer Watt; Michael Holder; Sandy Lee; Lynne V. Nazareth; Jessica Alföldi; Steve Rozen; Donna M. Muzny; Wesley C. Warren; Richard A. Gibbs; Richard Wilson; David C. Page