Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qibin Ma is active.

Publication


Featured researches published by Qibin Ma.


BMC Plant Biology | 2012

Identification of wild soybean miRNAs and their target genes responsive to aluminum stress.

Qiaoying Zeng; Cunyi Yang; Qibin Ma; Xiuping Li; Wen-Wen Dong; Hai Nian

BackgroundMicroRNAs (miRNAs) play important regulatory roles in development and stress response in plants. Wild soybean (Glycine soja) has undergone long-term natural selection and may have evolved special mechanisms to survive stress conditions as a result. However, little information about miRNAs especially miRNAs responsive to aluminum (Al) stress is available in wild soybean.ResultsTwo small RNA libraries and two degradome libraries were constructed from the roots of Al-treated and Al-free G. soja seedlings. For miRNA identification, a total of 7,287,655 and 7,035,914 clean reads in Al-treated and Al-free small RNAs libraries, respectively, were generated, and 97 known miRNAs and 31 novel miRNAs were identified. In addition, 49 p3 or p5 strands of known miRNAs were found. Among all the identified miRNAs, the expressions of 30 miRNAs were responsive to Al stress. Through degradome sequencing, 86 genes were identified as targets of the known miRNAs and five genes were found to be the targets of the novel miRNAs obtained in this study. Gene ontology (GO) annotations of target transcripts indicated that 52 target genes cleaved by conserved miRNA families might play roles in the regulation of transcription. Additionally, some genes, such as those for the auxin response factor (ARF), domain-containing disease resistance protein (NB-ARC), leucine-rich repeat and toll/interleukin-1 receptor-like protein (LRR-TIR) domain protein, cation transporting ATPase, Myb transcription factors, and the no apical meristem (NAM) protein, that are known to be responsive to stress, were found to be cleaved under Al stress conditions.ConclusionsA number of miRNAs and their targets were detected in wild soybean. Some of them that were responsive to biotic and abiotic stresses were regulated by Al stress. These findings provide valuable information to understand the function of miRNAs in Al tolerance.


PLOS ONE | 2014

Transcriptome Profiling to Discover Putative Genes Associated with Paraquat Resistance in Goosegrass (Eleusine indica L.)

Jing An; Xuefeng Shen; Qibin Ma; Cunyi Yang; Simin Liu; Yong Chen

Background Goosegrass (Eleusine indica L.), a serious annual weed in the world, has evolved resistance to several herbicides including paraquat, a non-selective herbicide. The mechanism of paraquat resistance in weeds is only partially understood. To further study the molecular mechanism underlying paraquat resistance in goosegrass, we performed transcriptome analysis of susceptible and resistant biotypes of goosegrass with or without paraquat treatment. Results The RNA-seq libraries generated 194,716,560 valid reads with an average length of 91.29 bp. De novo assembly analysis produced 158,461 transcripts with an average length of 1153.74 bp and 100,742 unigenes with an average length of 712.79 bp. Among these, 25,926 unigenes were assigned to 65 GO terms that contained three main categories. A total of 13,809 unigenes with 1,208 enzyme commission numbers were assigned to 314 predicted KEGG metabolic pathways, and 12,719 unigenes were categorized into 25 KOG classifications. Furthermore, our results revealed that 53 genes related to reactive oxygen species scavenging, 10 genes related to polyamines and 18 genes related to transport were differentially expressed in paraquat treatment experiments. The genes related to polyamines and transport are likely potential candidate genes that could be further investigated to confirm their roles in paraquat resistance of goosegrass. Conclusion This is the first large-scale transcriptome sequencing of E. indica using the Illumina platform. Potential genes involved in paraquat resistance were identified from the assembled sequences. The transcriptome data may serve as a reference for further analysis of gene expression and functional genomics studies, and will facilitate the study of paraquat resistance at the molecular level in goosegrass.


PLOS ONE | 2012

Overexpression of AtDREB1A Causes a Severe Dwarf Phenotype by Decreasing Endogenous Gibberellin Levels in Soybean [Glycine max (L.) Merr.]

Haicui Suo; Qibin Ma; Kaixin Ye; Cunyi Yang; Yujuan Tang; Juan Hao; Zhanyuan J. Zhang; Ming-Luan Chen; Yu-Qi Feng; Hai Nian

Gibberellic acids (GAs) are plant hormones that play fundamental roles in plant growth and developmental processes. Previous studies have demonstrated that three key enzymes of GA20ox, GA3ox, and GA2ox are involved in GA biosynthesis. In this study, the Arabidopsis DREB1A gene driven by the CaMV 35S promoter was introduced into soybean plants by Agrobacterium- mediated transformation. The results showed that the transgenic soybean plants exhibited a typical phenotype of GA-deficient mutants, such as severe dwarfism, small and dark-green leaves, and late flowering compared to those of the non-transgenic plants. The dwarfism phenotype was rescued by the application of exogenous GA3 once a week for three weeks with the concentrations of 144 µM or three times in one week with the concentrations of 60 µM. Quantitative RT-PCR analysis revealed that the transcription levels of the GA synthase genes were higher in the transgenic soybean plants than those in controls, whereas GA-deactivated genes except GmGA2ox4 showed lower levels of expression. The transcript level of GmGA2ox4 encoding the only deactivation enzyme using C20-GAs as the substrates in soybean was dramatically enhanced in transgenic plants compared to that of wide type. Furthermore, the contents of endogenous bioactive GAs were significantly decreased in transgenic plants than those of wide type. The results suggested that AtDREB1A could cause dwarfism mediated by GA biosynthesis pathway in soybean.


PLOS ONE | 2013

Identification and Comparative Analysis of Cadmium Tolerance-Associated miRNAs and Their Targets in Two Soybean Genotypes

Xiaolong Fang; Yunyun Zhao; Qibin Ma; Yian Huang; Peng Wang; Jie Zhang; Hai Nian; Cunyi Yang

MicroRNAs (miRNAs) play crucial roles in regulating the expression of various stress responses genes in plants. To investigate soybean (Glycine max) miRNAs involved in the response to cadmium (Cd), microarrays containing 953 unique miRNA probes were employed to identify differences in the expression patterns of the miRNAs between different genotypes, Huaxia3 (HX3, Cd-tolerant) and Zhonghuang24 (ZH24, Cd-sensitive). Twenty six Cd-responsive miRNAs were identified in total. Among them, nine were detected in both cultivars, while five were expressed only in HX3 and 12 were only in ZH24. The expression of 16 miRNAs was tested by qRT-PCR and most of the identified miRNAs were found to have similar expression patterns with microarray. Three hundred and seventy six target genes were identified for 204 miRNAs from a mixture degradome library, which was constructed from the root of HX3 and ZH24 with or without Cd treatment. Fifty five genes were identified to be cleaved by 14 Cd-responsive miRNAs. Gene ontology (GO) annotations showed that these target transcripts are implicated in a broad range of biological processes. In addition, the expression patterns of ten target genes were validated by qRT-PCR. The characterization of the miRNAs and the associated target genes in response to Cd exposure provides a framework for understanding the molecular mechanism of heavy metal tolerance in plants.


PLOS ONE | 2013

OsDREB2A, a Rice Transcription Factor, Significantly Affects Salt Tolerance in Transgenic Soybean

XiuXiang Zhang; Yujuan Tang; Qibin Ma; Cunyi Yang; Yinghui Mu; Haicui Suo; Lai-hui Luo; Hai Nian

The dehydration responsive element binding (DREB) transcription factors play an important role in regulating stress-related genes. OsDREB2A, a member of the DREBP subfamily of AP2/ERF transcription factors in rice (Oryza sativa), is involved in the abiotic stress response. OsDREB2A expression is induced by drought, low-temperature and salt stresses. Here, we report the ability of OsDREB2A to regulate high-salt response in transgenic soybean. Overexpressing OsDREB2A in soybeans enhanced salt tolerance by accumulating osmolytes, such as soluble sugars and free proline, and improving the expression levels of some stress-responsive transcription factors and key genes. The phenotypic characterization of transgenic soybean were significantly better than those of wild-type (WT). Electrophoresis mobility shift assay (EMSA) revealed that the OsDREB2A can bind to the DRE core element in vitro. These results indicate that OsDREB2A may participate in abiotic stress by directly binding with DRE element to regulate the expression of downstream genes. Overexpression of OsDREB2A in soybean might be used to improve tolerance to salt stress.


BMC Genomics | 2016

Genome-wide characterization of soybean P 1B -ATPases gene family provides functional implications in cadmium responses

Xiaolong Fang; Lei Wang; Xiaojuan Deng; Peng Wang; Qibin Ma; Hai Nian; Yingxiang Wang; Cunyi Yang

BackgroundThe P1B-ATPase subfamily is an important group involved in transporting heavy metals and has been extensively studied in model plants, such as Arabidopsis thaliana and Oryza sativa. Emerging evidence indicates that one homolog in Glycine max is also involved in cadmium (Cd) stress, but the gene family has not been fully investigated in soybean.ResultsHere, we identified 20 heavy metal ATPase (HMA) family members in the soybean genome, presented as 10 paralogous pairs, which is significantly greater than the number in Arabidopsis or rice, and was likely caused by the latest whole genome duplication event in soybean. A phylogenetic analysis divided the 20 members into six groups, each having conserved or divergent gene structures and protein motif patterns. The integration of RNA-sequencing and qRT-PCR data from multiple tissues provided an overall expression pattern for the HMA family in soybean. Further comparisons of expression patterns and the single nucleotide polymorphism distribution between paralogous pairs suggested functional conservation and the divergence of HMA genes during soybean evolution. Finally, analyses of the HMAs expressed in response to Cd stress provided evidence on how plants manage Cd tolerance, at least in the two contrasting soybean genotypes examined.ConclusionsThe genome-wide identification, chromosomal distribution, gene structures, and evolutionary and expression analyses of the 20 HMA genes in soybean provide an overall insight into their potential involvement in Cd responses. These results will facilitate further research on the HMA gene family, and their conserved and divergent biological functions in soybean.


BMC Plant Biology | 2015

Glyma11g13220 , a homolog of the vernalization pathway gene VERNALIZATION 1 from soybean [ Glycine max (L.) Merr. ], promotes flowering in Arabidopsis thaliana

Jing Lü; Haicui Suo; Rong Yi; Qibin Ma; Hai Nian

BackgroundThe precise timing of flowering is fundamental to successful reproduction, and has dramatic significance for crop yields. Although prolonged low temperatures are not required for flowering induction in soybean, vernalization pathway genes have been retained during the evolution of this species. Little information is currently available in regarding these genes in soybean.ResultsWe were able to detect the expression of Glyma11g13220 in different organs at all monitored developmental stages in soybean. Glyma11g13220 expression was higher in leaves and pods than in shoot apexes and stems. In addition, Glyma11g13220 was responsive to photoperiod and low temperature in soybean. Furthermore, Glyma11g13220 was found to be a nuclear-localized protein. Over-expression of Glyma11g13220 in an Arabidopsis Columbia-0 (Col-0) background resulted in early flowering. Quantitative real-time PCR analysis revealed that transcript levels of flower repressor FLOWERING LOCUS C (FLC), and FD decreased significantly in transgenic Arabidopsis compared with wild-type Col-0, while the expression of VERNALIZATION INSENSITIVE 3 (VIN3) and FLOWERING LOCUS T (FT) noticeably increased.ConclusionsOur results suggest that Glyma11g13220, a homolog of Arabidopsis VRN1, is a functional protein. Glyma11g13220, which is responsive to photoperiod and low temperature in soybean, may participate in the vernalization pathway in Arabidopsis and help regulate flowering time. Arabidopsis VRN1 and Glyma11g13220 exhibit conserved as well as diverged functions.


Theoretical and Applied Genetics | 2018

Acid phosphatase gene GmHAD1 linked to low phosphorus tolerance in soybean, through fine mapping

Zhandong Cai; Yanbo Cheng; Peiqi Xian; Qibin Ma; Ke Wen; Qiuju Xia; Gengyun Zhang; Hai Nian

Key messageMap-based cloning identified GmHAD1, a gene which encodes a HAD-like acid phosphatase, associated with soybean tolerance to low phosphorus stress.AbstractPhosphorus (P) deficiency in soils is a major limiting factor for crop growth worldwide. Plants may adapt to low phosphorus (LP) conditions via changes to root morphology, including the number, length, orientation, and branching of the principal root classes. To elucidate the genetic mechanisms for LP tolerance in soybean, quantitative trait loci (QTL) related to root morphology responses to LP were identified via hydroponic experiments. In total, we identified 14 major loci associated with these traits in a RIL population. The log-likelihood scores ranged from 2.81 to 7.43, explaining 4.23–13.98% of phenotypic variance. A major locus on chromosome 08, named qP8-2, was co-localized with an important P efficiency QTL (qPE8), containing phosphatase genes GmACP1 and GmACP2. Another major locus on chromosome 10 named qP10-2 explained 4.80–13.98% of the total phenotypic variance in root morphology. The qP10-2 contains GmHAD1, a gene which encodes an acid phosphatase. In the transgenic soybean hairy roots, GmHAD1 overexpression increased P efficiency by 8.4–16.5% relative to the control. Transgenic Arabidopsis plants had higher biomass than wild-type plants across both short- and long-term P reduction. These results suggest that GmHAD1, an acid phosphatase gene, improved the utilization of organic phosphate by soybean and Arabidopsis plants.


Scientific Reports | 2018

Use of sugarcane–soybean intercropping in acid soil impacts the structure of the soil fungal community

Tengxiang Lian; Yinghui Mu; Qibin Ma; Yanbo Cheng; Rui Gao; Zhandong Cai; Bin Jiang; Hai Nian

Although sugarcane-soybean intercropping has been widely used to control disease and improve productivity in the field, the response of soil fungal communities to intercropping has not been fully understood. In this study, the rhizosphere fungal communities of sugarcane and soybean under monoculture and intercropping systems were investigated using Illumina MiSeq sequencing of ITS gene. Intercropping decreased the alpha-diversity and changed fungal community composition compared to monocultures. Taxonomic analyses showed that the dominant phyla were Ascomycota, Zygomycota and Basidiomycota. The abundance of Ascomycota decreased in intercropping sugarcane-grown soil compared to monoculture, while it increased in soybean-grown soil in the intercropping system. In addition, intercropping increased the abundance of important fungal genera, such as Trichoderma, Hypocreales and Fusarium but decreased the relative abundance of Gibberella and Chaetomium. The results of canonical correspondence analysis and automatic linear modelling indicated that fungal community compositions were closely associated with soil parameters such as total nitrogen (TN), soil organic matter (SOC), pH and NO3−, which suggests that the impacts of intercropping on the soil fungal community are linked to the alteration of soil chemical properties.


BMC Plant Biology | 2014

RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications

Lei Wang; Chenlong Cao; Qibin Ma; Qiaoying Zeng; Haifeng Wang; Zhihao Cheng; Genfeng Zhu; Ji Qi; Hong Ma; Hai Nian; Yingxiang Wang

Collaboration


Dive into the Qibin Ma's collaboration.

Top Co-Authors

Avatar

Hai Nian

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Cunyi Yang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yinghui Mu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yanbo Cheng

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Gengyun Zhang

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Haicui Suo

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qiuju Xia

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Zhandong Cai

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qiaoying Zeng

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaolong Fang

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge