Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gengyun Zhang is active.

Publication


Featured researches published by Gengyun Zhang.


Nature Genetics | 2010

Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection

Hon-Ming Lam; Xun Xu; Xin Liu; Wenbin Chen; Guohua Yang; Fuk-Ling Wong; Man-Wah Li; Weiming He; Nan Qin; Bo Wang; Jun Li; Min Jian; Jian Wang; Guihua Shao; Jun Wang; Samuel Sai-Ming Sun; Gengyun Zhang

We report a large-scale analysis of the patterns of genome-wide genetic variation in soybeans. We re-sequenced a total of 17 wild and 14 cultivated soybean genomes to an average of approximately ×5 depth and >90% coverage using the Illumina Genome Analyzer II platform. We compared the patterns of genetic variation between wild and cultivated soybeans and identified higher allelic diversity in wild soybeans. We identified a high level of linkage disequilibrium in the soybean genome, suggesting that marker-assisted breeding of soybean will be less challenging than map-based cloning. We report linkage disequilibrium block location and distribution, and we identified a set of 205,614 tag SNPs that may be useful for QTL mapping and association studies. The data here provide a valuable resource for the analysis of wild soybeans and to facilitate future breeding and quantitative trait analysis.


Nature Biotechnology | 2013

Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement

Rajeev K. Varshney; Chi Song; Rachit K. Saxena; Sarwar Azam; Sheng Yu; Andrew G. Sharpe; Steven B. Cannon; Jong-Min Baek; Benjamin D. Rosen; Bunyamin Tar'an; Teresa Millán; Xudong Zhang; Larissa Ramsay; Aiko Iwata; Ying Wang; William C. Nelson; Andrew D. Farmer; Pooran M. Gaur; Carol Soderlund; R. Varma Penmetsa; Chunyan Xu; Arvind K. Bharti; Weiming He; Peter Winter; Shancen Zhao; James K. Hane; Noelia Carrasquilla-Garcia; Janet A. Condie; Hari D. Upadhyaya; Ming-Cheng Luo

Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection. Candidate genes for disease resistance and agronomic traits are highlighted, including traits that distinguish the two main market classes of cultivated chickpea—desi and kabuli. These data comprise a resource for chickpea improvement through molecular breeding and provide insights into both genome diversity and domestication.


Nature Biotechnology | 2012

Draft genome sequence of pigeonpea ( Cajanus cajan ), an orphan legume crop of resource-poor farmers

Rajeev K. Varshney; Weineng Chen; Yupeng Li; Arvind K. Bharti; Rachit K. Saxena; J. A. Schlueter; Mark Ta Donoghue; Sarwar Azam; G. Y. Fan; A. M. Whaley; Andrew D. Farmer; J. Sheridan; Aiko Iwata; Reetu Tuteja; R. V. Penmetsa; W. Wu; H. D. Upadhyaya; Shiaw-Pyng Yang; Trushar Shah; K. B. Saxena; T. Michael; W. R. McCombie; B. C. Yang; Gengyun Zhang; Yang H; Jun Wang; Charles Spillane; Douglas R. Cook; Gregory D. May; Xun Xu

Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences and a genetic map, we assembled into scaffolds representing 72.7% (605.78 Mb) of the 833.07 Mb pigeonpea genome. Genome analysis predicted 48,680 genes for pigeonpea and also showed the potential role that certain gene families, for example, drought tolerance–related genes, have played throughout the domestication of pigeonpea and the evolution of its ancestors. Although we found a few segmental duplication events, we did not observe the recent genome-wide duplication events observed in soybean. This reference genome sequence will facilitate the identification of the genetic basis of agronomically important traits, and accelerate the development of improved pigeonpea varieties that could improve food security in many developing countries.


Nature Genetics | 2012

Comparative population genomics of maize domestication and improvement

Matthew B. Hufford; Xun Xu; Joost van Heerwaarden; Tanja Pyhäjärvi; Jer Ming Chia; Reed A. Cartwright; Robert J. Elshire; Jeffrey C. Glaubitz; Kate Guill; Shawn M. Kaeppler; Jinsheng Lai; Peter L. Morrell; Laura M. Shannon; Chi Song; Nathan M. Springer; Ruth A. Swanson-Wagner; Peter Tiffin; Jun Wang; Gengyun Zhang; John Doebley; Michael D. McMullen; Doreen Ware; Edward S. Buckler; Shuang Yang; Jeffrey Ross-Ibarra

Domestication and plant breeding are ongoing 10,000-year-old evolutionary experiments that have radically altered wild species to meet human needs. Maize has undergone a particularly striking transformation. Researchers have sought for decades to identify the genes underlying maize evolution, but these efforts have been limited in scope. Here, we report a comprehensive assessment of the evolution of modern maize based on the genome-wide resequencing of 75 wild, landrace and improved maize lines. We find evidence of recovery of diversity after domestication, likely introgression from wild relatives, and evidence for stronger selection during domestication than improvement. We identify a number of genes with stronger signals of selection than those previously shown to underlie major morphological changes. Finally, through transcriptome-wide analysis of gene expression, we find evidence both consistent with removal of cis-acting variation during maize domestication and improvement and suggestive of modern breeding having increased dominance in expression while targeting highly expressed genes.


Nature Genetics | 2012

Maize HapMap2 identifies extant variation from a genome in flux

Jer-Ming Chia; Chi Song; Peter J. Bradbury; Denise E. Costich; Natalia de Leon; John Doebley; Robert J. Elshire; Brandon S. Gaut; Laura Geller; Jeffrey C. Glaubitz; Michael A. Gore; Kate Guill; James B. Holland; Matthew B. Hufford; Jinsheng Lai; Meng Li; Xin Liu; Yanli Lu; Richard McCombie; Rebecca J. Nelson; Jesse Poland; Boddupalli M. Prasanna; Tanja Pyhäjärvi; Tingzhao Rong; Rajandeep S. Sekhon; Qi Sun; Maud I. Tenaillon; Feng Tian; Jun Wang; Xun Xu

Whereas breeders have exploited diversity in maize for yield improvements, there has been limited progress in using beneficial alleles in undomesticated varieties. Characterizing standing variation in this complex genome has been challenging, with only a small fraction of it described to date. Using a population genetics scoring model, we identified 55 million SNPs in 103 lines across pre-domestication and domesticated Zea mays varieties, including a representative from the sister genus Tripsacum. We find that structural variations are pervasive in the Z. mays genome and are enriched at loci associated with important traits. By investigating the drivers of genome size variation, we find that the larger Tripsacum genome can be explained by transposable element abundance rather than an allopolyploid origin. In contrast, intraspecies genome size variation seems to be controlled by chromosomal knob content. There is tremendous overlap in key gene content in maize and Tripsacum, suggesting that adaptations from Tripsacum (for example, perennialism and frost and drought tolerance) can likely be integrated into maize.


Nature Biotechnology | 2012

Genome sequence of foxtail millet ( Setaria italica ) provides insights into grass evolution and biofuel potential

Gengyun Zhang; Xin Liu; Zhiwu Quan; Shifeng Cheng; Xun Xu; Shengkai Pan; Min Xie; Peng Zeng; Zhen Yue; Wenliang Wang; Ye Tao; Chao Bian; Changlei Han; Qiuju Xia; Xiaohua Peng; Rui Cao; Xinhua Yang; Dongliang Zhan; Jingchu Hu; Yinxin Zhang; Henan Li; Hua Li; Ning Li; Wang J; Chanchan Wang; Renyi Wang; Tao Guo; Yanjie Cai; Chengzhang Liu; Haitao Xiang

Foxtail millet (Setaria italica), a member of the Poaceae grass family, is an important food and fodder crop in arid regions and has potential for use as a C4 biofuel. It is a model system for other biofuel grasses, including switchgrass and pearl millet. We produced a draft genome (∼423 Mb) anchored onto nine chromosomes and annotated 38,801 genes. Key chromosome reshuffling events were detected through collinearity identification between foxtail millet, rice and sorghum including two reshuffling events fusing rice chromosomes 7 and 9, 3 and 10 to foxtail millet chromosomes 2 and 9, respectively, that occurred after the divergence of foxtail millet and rice, and a single reshuffling event fusing rice chromosome 5 and 12 to foxtail millet chromosome 3 that occurred after the divergence of millet and sorghum. Rearrangements in the C4 photosynthesis pathway were also identified.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences

Zhenyu Gao; Shancen Zhao; Weiming He; Longbiao Guo; Youlin Peng; Jin-Jin Wang; Xiaosen Guo; Xuemei Zhang; Yuchun Rao; Chi Zhang; Guojun Dong; Fengya Zheng; Chang-Xin Lu; Jiang Hu; Qing Zhou; Hui-Juan Liu; Haiyang Wu; Jie Xu; Peixiang Ni; Dali Zeng; Deng-Hui Liu; Peng Tian; Li-Hui Gong; Chen Ye; Guangheng Zhang; Jian Wang; Fu-kuan Tian; Dawei Xue; Yi Liao; Li Zhu

Significance Hybrid rice developed in China has been contributing greatly to the world’s food production. The pioneer super hybrid rice developed by crossing 93–11 and Peiai 64s, Liang–You–Pei–Jiu has been widely grown in China and other Asia-Pacific regions for its high yield. Here, the quality genome sequences for both parental lines were presented and updated, and a high-resolution map of genome-wide graphic genotypes was constructed by deep resequencing a core population of 132 Liang–You–Pei–Jiu recombinant inbred lines. A series of yield-associated loci were fine-mapped, and two of them were delimited to regions each covering one candidate gene with the large recombinant inbred line population. The study provided an ideal platform for molecular breeding by quantitative trait loci cloning in rice. The growing world population and shrinkage of arable land demand yield improvement of rice, one of the most important staple crops. To elucidate the genetic basis of yield and uncover its associated loci in rice, we resequenced the core recombinant inbred lines of Liang–You–Pei–Jiu, the widely cultivated super hybrid rice, and constructed a high-resolution linkage map. We detected 43 yield-associated quantitative trait loci, of which 20 are unique. Based on the high-density physical map, the genome sequences of paternal variety 93–11 and maternal cultivar PA64s of Liang–You–Pei–Jiu were significantly improved. The large recombinant inbred line population combined with plentiful high-quality single nucleotide polymorphisms and insertions/deletions between parental genomes allowed us to fine-map two quantitative trait loci, qSN8 and qSPB1, and to identify days to heading8 and lax panicle1 as candidate genes, respectively. The quantitative trait locus qSN8 was further confirmed to be days to heading8 by a complementation test. Our study provided an ideal platform for molecular breeding by targeting and dissecting yield-associated loci in rice.


BMC Plant Biology | 2014

Identification of candidate genes for drought tolerance by whole-genome resequencing in maize

Jie Xu; Yibing Yuan; Yunbi Xu; Gengyun Zhang; Xiaosen Guo; Fengkai Wu; Qi Wang; Tingzhao Rong; Guangtang Pan; Moju Cao; Qilin Tang; Shibin Gao; Yaxi Liu; Jing Wang; Hai Lan; Yanli Lu

BackgroundDrought stress is one of the major limiting factors for maize production. With the availability of maize B73 reference genome and whole-genome resequencing of 15 maize inbreds, common variants (CV) and clustering analyses were applied to identify non-synonymous SNPs (nsSNPs) and corresponding candidate genes for drought tolerance.ResultsA total of 524 nsSNPs that were associated with 271 candidate genes involved in plant hormone regulation, carbohydrate and sugar metabolism, signaling molecules regulation, redox reaction and acclimation of photosynthesis to environment were detected by CV and cluster analyses. Most of the nsSNPs identified were clustered in bin 1.07 region that harbored six previously reported QTL with relatively high phenotypic variation explained for drought tolerance. Genes Ontology (GO) analysis of candidate genes revealed that there were 35 GO terms related to biotic stimulus and membrane-bounded organelle, showing significant differences between the candidate genes and the reference B73 background. Changes of expression level in these candidate genes for drought tolerance were detected using RNA sequencing for fertilized ovary, basal leaf meristem tissue and roots collected under drought stressed and well-watered conditions. The results indicated that 70% of candidate genes showed significantly expression changes under two water treatments and our strategies for mining candidate genes are feasible and relatively efficient.ConclusionsOur results successfully revealed candidate nsSNPs and associated genes for drought tolerance by comparative sequence analysis of 16 maize inbred lines. Both methods we applied were proved to be efficient for identifying candidate genes for complex traits through the next-generation sequencing technologies (NGS). These selected genes will not only facilitate understanding of genetic basis of drought stress response, but also accelerate genetic improvement through marker-assisted selection in maize.


Scientific Reports | 2015

Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community

Yizhuang Zhou; Phillip B. Pope; Shaochun Li; Bo Wen; Fengji Tan; Shu Cheng; Jing Chen; Jinlong Yang; Feng Liu; Xuejing Lei; Qingqing Su; Chengran Zhou; Jiao Zhao; Xiuzhu Dong; Tao Jin; Xin Zhou; Shuang Yang; Gengyun Zhang; Yang H; Jian Wang; Ruifu Yang; Vincent G. H. Eijsink; Jun Wang

Reaching a comprehensive understanding of how nature solves the problem of degrading recalcitrant biomass may eventually allow development of more efficient biorefining processes. Here we interpret genomic and proteomic information generated from a cellulolytic microbial consortium (termed F1RT) enriched from soil. Analyses of reconstructed bacterial draft genomes from all seven uncultured phylotypes in F1RT indicate that its constituent microbes cooperate in both cellulose-degrading and other important metabolic processes. Support for cellulolytic inter-species cooperation came from the discovery of F1RT microbes that encode and express complimentary enzymatic inventories that include both extracellular cellulosomes and secreted free-enzyme systems. Metabolic reconstruction of the seven F1RT phylotypes predicted a wider genomic rationale as to how this particular community functions as well as possible reasons as to why biomass conversion in nature relies on a structured and cooperative microbial community.


Nature Communications | 2013

Analysis of elite variety tag SNPs reveals an important allele in upland rice

Jun Lyu; Shilai Zhang; Yang Dong; Weiming He; Jing Zhang; Xianneng Deng; Yesheng Zhang; Xin Li; Baoye Li; Wangqi Huang; Wenting Wan; Yang Yu; Qiong Li; Jun Li; Xin Liu; Bo Wang; Dayun Tao; Gengyun Zhang; Jun Wang; Xun Xu; Fengyi Hu; Wen Wang

Elite crop varieties usually fix alleles that occur at low frequencies within non-elite gene pools. Dissecting these alleles for desirable agronomic traits can be accomplished by comparing the genomes of elite varieties with those from non-elite populations. Here we deep-sequence six elite rice varieties and use two large control panels to identify elite variety tag single-nucleotide polymorphism alleles (ETASs). Guided by this preliminary analysis, we comprehensively characterize one protein-altering ETAS in the 9-cis-epoxycarotenoid dioxygenase gene of the IRAT104 upland rice variety. This allele displays a drastic frequency difference between upland and irrigated rice, and a selective sweep is observed around this allele. Functional analysis indicates that in upland rice, this allele is associated with significantly higher abscisic acid levels and denser lateral roots, suggesting its association with upland rice suitability. This report provides a potential strategy to mine rare, agronomically important alleles.

Collaboration


Dive into the Gengyun Zhang's collaboration.

Top Co-Authors

Avatar

Ning Li

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhiwu Quan

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Xuemei Ni

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Xun Xu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Jun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weiming He

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xin Liu

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Chi Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanli Lu

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge