Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiming Duan is active.

Publication


Featured researches published by Qiming Duan.


Journal of Biological Chemistry | 2013

Identification of a Mutant α1 Na/K-ATPase That Pumps but Is Defective in Signal Transduction

Fangfang Lai; Namrata Madan; Qiqi Ye; Qiming Duan; Zhichuan Li; Shaomeng Wang; Shuyi Si; Zijian Xie

Background: It has not been possible to study the pumping and signaling functions of Na/K-ATPase independently in live cells. Results: Both cell-free and cell-based assays indicate that the A420P mutation abolishes the Src regulatory function of Na/K-ATPase. Conclusion: A420P mutant has normal pumping but not signaling function. Significance: Identification of Src regulation-null mutants is crucial for addressing physiological role of Na/K-ATPase. The α1 Na/K-ATPase possesses both pumping and signaling functions. However, it has not been possible to study these functions independently in live cells. We have identified a 20-amino acid peptide (Ser-415 to Gln-434) (NaKtide) from the nucleotide binding domain of α1 Na/K-ATPase that binds and inhibits Src in vitro. The N terminus of NaKtide adapts a helical structure. In vitro kinase assays showed that replacement of residues that contain a bulky side chain in the helical structure of NaKtide by alanine abolished the inhibitory effect of the peptide on Src. Similarly, disruption of helical structure by proline replacement, either single or in combination, reduced the inhibitory potency of NaKtide on Src. To identify mutant α1 that retains normal pumping function but is defective in Src regulation, we transfected Na/K-ATPase α1 knockdown PY-17 cells with expression vectors of wild type or mutant α1 carrying Ala to Pro mutations in the region of NaKtide helical structure and generated several stable cell lines. We found that expression of either A416P or A420P or A425P mutant fully restored the α1 content and consequently the pumping capacity of cells. However, in contrast to A416P, either A420P or A425P mutant was incapable of interacting and regulating cellular Src. Consequently, expression of these two mutants caused significant inhibition of ouabain-activated signal transduction and cell growth. Thus we have identified α1 mutant that has normal pumping function but is defective in signal transduction.


Journal of Biological Chemistry | 2013

Expression of Mutant α1 Na/K-ATPase Defective in Conformational Transition Attenuates Src-mediated Signal Transduction

Qiqi Ye; Fangfang Lai; Moumita Banerjee; Qiming Duan; Zhichuan Li; Shuyi Si; Zijian Xie

Background: We propose that Na/K-ATPase regulates Src in an E1/E2 conformation-dependent manner. Results: Expression of α1 mutants defective in E1/E2 transition altered both basal and stimuli-induced Src regulation. Conclusion: Na/K-ATPase is necessary for dynamic regulation of Src and Src-mediated pathways. Significance: This is the first demonstration that E1/E2 transition-defective mutants can affect both pumping and signaling functions of Na/K-ATPase. The α1 Na/K-ATPase possesses both pumping and signaling functions. Using purified enzyme we found that the α1 Na/K-ATPase might interact with and regulate Src activity in a conformation-dependent manner. Here we further explored the importance of the conformational transition capability of α1 Na/K-ATPase in regulation of Src-related signal transduction in cell culture. We first rescued the α1-knockdown cells by wild-type rat α1 or α1 mutants (I279A and F286A) that are known to be defective in conformational transition. Stable cell lines with comparable expression of wild type α1, I279A, and F286A were characterized. As expected, the defects in conformation transition resulted in comparable degree of inhibition of pumping activity in the mutant-rescued cell lines. However, I279A was more effective in inhibiting basal Src activity than either the wild-type or the F286A. Although much higher ouabain concentration was required to stimulate Src in I279A-rescued cells, extracellular K+ was comparably effective in regulating Src in both control and I279A cells. In contrast, ouabain and extracellular K+ failed to produce detectable changes in Src activity in F286A-rescued cells. Furthermore, expression of either mutant inhibited integrin-induced activation of Src/FAK pathways and slowed cell spreading processes. Finally, the expression of these mutants inhibited cell growth, with I279A being more potent than that of F286A. Taken together, the new findings suggest that the α1 Na/K-ATPase may be a key player in dynamic regulation of cellular Src activity and that the capability of normal conformation transition is essential for both pumping and signaling functions of α1 Na/K-ATPase.


Free Radical Biology and Medicine | 2014

Involvement of Na/K-ATPase in hydrogen peroxide-induced activation of the Src/ERK pathway in LLC-PK1 cells

Yu Wang; Qiqi Ye; Changxuan Liu; Jeffrey X. Xie; Yanling Yan; Fangfang Lai; Qiming Duan; Xiaomei Li; Jiang Tian; Zijian Xie

We have shown that Na/K-ATPase interacts with Src. Here, we test the role of this interaction in H2O2-induced activation of Src and ERK. We found that exposure of LLC-PK1 cells to H2O2 generated by the addition of glucose oxidase into the culture medium activated Src and ERK1/2. It also caused a modest reduction in the number of surface Na/K-ATPases and in ouabain-sensitive Rb(+) uptake. These effects of H2O2 seem similar to those induced by ouabain, a specific ligand of Na/K-ATPase, in LLC-PK1 cells. In accordance, we found that the effects of H2O2 on Src and ERK1/2 were inhibited in α1 Na/K-ATPase-knockdown PY-17 cells. Whereas expression of wild-type α1 or the A420P mutant α1 defective in Src regulation rescued the pumping activity in PY-17 cells, only α1, and not the A420P mutant, was able to restore the H2O2-induced activation of protein kinases. Consistent with this, disrupting the formation of the Na/K-ATPase/Src complex with pNaKtide attenuated the effects of H2O2 on the kinases. Moreover, a direct effect of H2O2 on Na/K-ATPase-mediated regulation of Src was demonstrated. Finally, H2O2 reduced the expression of E-cadherin through the Na/K-ATPase/Src-mediated signaling pathway. Taken together, the data suggest that the Na/K-ATPase/Src complex may serve as one of the receptor mechanisms for H2O2 to regulate Src/ERK protein kinases and consequently the phenotype of renal epithelial cells.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program

Alexander Morrison-Nozik; Priti Anand; Han Zhu; Qiming Duan; Mohamad Sabeh; Domenick A. Prosdocimo; Madeleine E. Lemieux; Nikolai Baastrup Nordsborg; Aaron P. Russell; Calum A. MacRae; Anthony N. Gerber; Mukesh K. Jain; Saptarsi M. Haldar

Significance Classic physiological studies have documented the endurance-promoting effects of glucocorticoid (GC) hormones on skeletal muscle. Pharmacologic GC therapy also improves muscle function in patients with Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. Despite these well-established physiological and clinical observations, the molecular basis underlying the beneficial effects of GCs in skeletal muscle remains obscure. This study shows that physiological effects of GCs on muscle endurance and their therapeutic effect in DMD are mediated, in part, via activation of a potent metabolic gene called Kruppel-like factor 15 (KLF15). Importantly, KLF15 does not drive GC-mediated muscle wasting. These data shed light on the poorly understood ergogenic properties of GCs, findings that may inform steroid-sparing therapies for DMD and other muscle diseases. Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC–KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming.


Science Translational Medicine | 2017

BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure

Qiming Duan; Sarah McMahon; Priti Anand; Hirsh Shah; Sean Thomas; Hazel T. Salunga; Yu Huang; Rongli Zhang; Aarathi Sahadevan; Madeleine E. Lemieux; Jonathan D. Brown; Deepak Srivastava; James E. Bradner; Timothy A. McKinsey; Saptarsi M. Haldar

BET bromodomain inhibition treats heart failure by blocking innate inflammatory and profibrotic gene networks. BETting on a new heart failure treatment Heart failure remains a common and difficult-to-treat medical condition with a high mortality, and there is a great need for more effective therapeutics. Duan et al. determined that a small molecule called JQ1, which was originally developed for cancer therapy, may be an effective treatment for heart failure. Bromodomain-containing protein 4, a member of the BET family of epigenetic regulators and the target of JQ1, plays a role in the development of heart failure and contributes to cardiomyocyte hypertrophy. The authors used a combination of mouse and human induced pluripotent stem cell–derived cardiomyocyte models to show that JQ1 can reverse the detrimental effects of this protein and improve cardiac structure and function even in the setting of prolonged and severe disease. They also found that JQ1 did not interfere with physiological cardiac hypertrophy that occurs in response to exercise, supporting the safety of this approach. Despite current standard of care, the average 5-year mortality after an initial diagnosis of heart failure (HF) is about 40%, reflecting an urgent need for new therapeutic approaches. Previous studies demonstrated that the epigenetic reader protein bromodomain-containing protein 4 (BRD4), an emerging therapeutic target in cancer, functions as a critical coactivator of pathologic gene transactivation during cardiomyocyte hypertrophy. However, the therapeutic relevance of these findings to human disease remained unknown. We demonstrate that treatment with the BET bromodomain inhibitor JQ1 has therapeutic effects during severe, preestablished HF from prolonged pressure overload, as well as after a massive anterior myocardial infarction in mice. Furthermore, JQ1 potently blocks agonist-induced hypertrophy in human induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs). Integrated transcriptomic analyses across animal models and human iPSC-CMs reveal that BET inhibition preferentially blocks transactivation of a common pathologic gene regulatory program that is robustly enriched for NFκB and TGF-β signaling networks, typified by innate inflammatory and profibrotic myocardial genes. As predicted by these specific transcriptional mechanisms, we found that JQ1 does not suppress physiological cardiac hypertrophy in a mouse swimming model. These findings establish that pharmacologically targeting innate inflammatory and profibrotic myocardial signaling networks at the level of chromatin is effective in animal models and human cardiomyocytes, providing the critical rationale for further development of BET inhibitors and other epigenomic medicines for HF.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Modulation of cardiac Na+,K+-ATPase cell surface abundance by simulated ischemia-reperfusion and ouabain preconditioning.

Aude Belliard; Yoann Sottejeau; Qiming Duan; Jessa L. Karabin; Sandrine V. Pierre

Na(+),K(+)-ATPase and cell survival were investigated in a cellular model of ischemia-reperfusion (I/R)-induced injury and protection by ouabain-induced preconditioning (OPC). Rat neonatal cardiac myocytes were subjected to 30 min of substrate and coverslip-induced ischemia followed by 30 min of simulated reperfusion. This significantly compromised cell viability as documented by lactate dehydrogenase release and Annexin V/propidium iodide staining. Total Na(+),K(+)-ATPase α(1)- and α(3)-polypeptide expression remained unchanged, but cell surface biotinylation and immunostaining studies revealed that α(1)-cell surface abundance was significantly decreased. Na(+),K(+)-ATPase-activity in crude homogenates and (86)Rb(+) transport in live cells were both significantly decreased by about 30% after I/R. OPC, induced by a 4-min exposure to 10 μM ouabain that ended 8 min before the beginning of ischemia, increased cell viability in a PKCε-dependent manner. This was comparable with the protective effect of OPC previously reported in intact heart preparations. OPC prevented I/R-induced decrease of Na(+),K(+)-ATPase activity and surface expression. This model also revealed that Na(+),K(+)-ATPase-mediated (86)Rb(+) uptake was not restored to control levels in the OPC group, suggesting that the increased viability was not conferred by an increased Na(+),K(+)-ATPase-mediated ion transport capacity at the cell membrane. Consistent with this observation, transient expression of an internalization-resistant mutant form of Na(+),K(+)-ATPase α(1) known to have increased surface abundance without increased ion transport activity successfully reduced I/R-induced cell death. These results suggest that maintenance of Na(+),K(+)-ATPase cell surface abundance is critical to myocyte survival after an ischemic attack and plays a role in OPC-induced protection. They further suggest that the protection conferred by increased surface expression of Na(+),K(+)-ATPase may be independent of ion transport.


Biochimica et Biophysica Acta | 2014

L-type calcium channel modulates cystic kidney phenotype.

Xingjian Jin; Brian S. Muntean; Munaf Aal-Aaboda; Qiming Duan; Jing Zhou; Surya M. Nauli

In polycystic kidney disease (PKD), abnormal proliferation and genomic instability of renal epithelia have been associated with cyst formation and kidney enlargement. We recently showed that L-type calcium channel (CaV1.2) is localized to primary cilia of epithelial cells. Previous studies have also shown that low intracellular calcium level was associated with the hyperproliferation phenotype in the epithelial cells. However, the relationship between calcium channel and cystic kidney phenotype is largely unknown. In this study, we generated cells with somatic deficient Pkd1 or Pkd2 to examine ciliary CaV1.2 function via lentiviral knockdown or pharmacological verapamil inhibition. Although inhibition of CaV1.2 expression or function did not change division and growth patterns in wild-type epithelium, it led to hyperproliferation and polyploidy in mutant cells. Lack of CaV1.2 in Pkd mutant cells also decreased the intracellular calcium level. This contributed to a decrease in CaM kinase activity, which played a significant role in regulating Akt and Erk signaling pathways. Consistent with our in vitro results, CaV1.2 knockdown in zebrafish and Pkd1 heterozygous mice facilitated the formation of kidney cysts. Larger cysts were developed faster in Pkd1 heterozygous mice with CaV1.2 knockdown. Overall, our findings emphasized the importance of CaV1.2 expression in kidneys with somatic Pkd mutation. We further suggest that CaV1.2 could serve as a modifier gene to cystic kidney phenotype.


Journal of Molecular and Cellular Cardiology | 2015

Role of phosphoinositide 3-kinase IA (PI3K-IA) activation in cardioprotection induced by ouabain preconditioning

Qiming Duan; Namrata Madan; Jian Wu; Jennifer Kalisz; Krunal Y. Doshi; Saptarsi M. Haldar; Lijun Liu; Sandrine V. Pierre

Acute myocardial infarction, the clinical manifestation of ischemia-reperfusion (IR) injury, is a leading cause of death worldwide. Like ischemic preconditioning (IPC) induced by brief episodes of ischemia and reperfusion, ouabain preconditioning (OPC) mediated by Na/K-ATPase signaling protects the heart against IR injury. Class I PI3K activation is required for IPC, but its role in OPC has not been investigated. While PI3K-IB is critical to IPC, studies have suggested that ouabain signaling is PI3K-IA-specific. Hence, a pharmacological approach was used to test the hypothesis that OPC and IPC rely on distinct PI3K-I isoforms. In Langendorff-perfused mouse hearts, OPC was initiated by 4 min of ouabain 10 μM and IPC was triggered by 4 cycles of 5 min ischemia and reperfusion prior to 40 min of global ischemia and 30 min of reperfusion. Without affecting PI3K-IB, ouabain doubled PI3K-IA activity and Akt phosphorylation at Ser(473). IPC and OPC significantly preserved cardiac contractile function and tissue viability as evidenced by left ventricular developed pressure and end-diastolic pressure recovery, reduced lactate dehydrogenase release, and decreased infarct size. OPC protection was blunted by the PI3K-IA inhibitor PI-103, but not by the PI3K-IB inhibitor AS-604850. In contrast, IPC-mediated protection was not affected by PI-103 but was blocked by AS-604850, suggesting that PI3K-IA activation is required for OPC while PI3K-IB activation is needed for IPC. Mechanistically, PI3K-IA activity is required for ouabain-induced Akt activation but not PKCε translocation. However, in contrast to PKCε translocation which is critical to protection, Akt activity was not required for OPC. Further studies shall reveal the identity of the downstream targets of this new PI3K IA-dependent branch of OPC. These findings may be of clinical relevance in patients at risk for myocardial infarction with underlying diseases and/or medication that could differentially affect the integrity of cardiac PI3K-IA and IB pathways.


American Journal of Physiology-cell Physiology | 2017

Src-independent ERK signaling through the rat α3 isoform of Na/K-ATPase

Namrata Madan; Yunhui Xu; Qiming Duan; Moumita Banerjee; Isabel Larre; Sandrine V. Pierre; Zijian Xie

The Na/K-ATPase α1 polypeptide supports both ion-pumping and signaling functions. The Na/K-ATPase α3 polypeptide differs from α1 in both its primary structure and its tissue distribution. The expression of α3 seems particularly important in neurons, and recent clinical evidence supports a unique role of this isoform in normal brain function. The nature of this specific role of α3 has remained elusive, because the ubiquitous presence of α1 has hindered efforts to characterize α3-specific functions in mammalian cell systems. Using Na/K-ATPase α1 knockdown pig kidney cells (PY-17), we generated the first stable mammalian cell line expressing a ouabain-resistant form of rat Na/K-ATPase α3 in the absence of endogenous pig α1 detectable by Western blotting. In these cells, Na/K-ATPase α3 formed a functional ion-pumping enzyme and rescued the expression of Na/K-ATPase β1 and caveolin-1 to levels comparable with those observed in PY-17 cells rescued with a rat Na/K-ATPase α1 (AAC-19). The α3-containing enzymes had lower Na+ affinity and lower ouabain-sensitive transport activity than their α1-containing counterparts under basal conditions, but showed a greater capacity to be activated when intracellular Na+ was increased. In contrast to Na/K-ATPase α1, α3 could not regulate Src. Upon exposure to ouabain, Src activation did not occur, yet ERK was activated through Src-independent pathways involving PI3K and PKC. Hence, α3 expression confers signaling and pumping properties that are clearly distinct from that of cells expressing Na/K-ATPase α1.


Physiological Reports | 2016

Ischemia/reperfusion‐induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+‐ATPase: protection by ouabain preconditioning

Aude Belliard; Gaurav K. Gulati; Qiming Duan; Rosana Alves; Shannon Brewer; Namrata Madan; Yoann Sottejeau; Xiaoliang Wang; Jennifer Kalisz; Sandrine V. Pierre

Cardiac glycosides (CG) are traditionally known as positive cardiac inotropes that inhibit Na+/K+‐ATPase‐dependent ion transport. CG also trigger‐specific signaling pathways through the cardiac Na+/K+‐ATPase, with beneficial effects in ischemia/reperfusion (I/R) injury (e.g., ouabain preconditioning, known as OPC) and hypertrophy. Our current understanding of hypersensitivity to CG and subsequent toxicity in the ischemic heart is mostly based on specific I/R‐induced alterations of the Na+/K+‐ATPase enzymatic function and has remained incomplete. The primary goal of this study was to investigate and compare the impact of I/R on Na+/K+‐ATPase enzymatic and signaling functions. Second, we assessed the impact of OPC on both functions. Langendorff‐perfused rat hearts were exposed to 30 min of ischemia and 30 min of reperfusion. At the inotropic concentration of 50 μmol/L, ouabain increased ERK and Akt phosphorylation in control hearts. In I/R hearts, this concentration did not induced positive inotropy and failed to induce Akt or ERK phosphorylation. The inotropic response to dobutamine as well as insulin signaling persisted, suggesting specific alterations of Na+/K+‐ATPase. Indeed, Na+/K+‐ATPase protein expression was intact, but the enzyme activity was decreased by 60% and the enzymatic function of the isoform with high affinity for ouabain was abolished following I/R. Strikingly, OPC prevented all I/R‐induced alterations of the receptor. Further studies are needed to reveal the respective roles of I/R‐induced modulations of Na+/K+‐ATPase enzymatic and signaling functions in cardiomyocyte death.

Collaboration


Dive into the Qiming Duan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiqi Ye

University of Toledo

View shared research outputs
Top Co-Authors

Avatar

Saptarsi M. Haldar

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge