Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qing-Hai Zhang is active.

Publication


Featured researches published by Qing-Hai Zhang.


Cell and Tissue Research | 2012

Transforming growth factor-β signaling in tumor initiation, progression and therapy in breast cancer: an update

Xuyu Zu; Qing-Hai Zhang; Renxian Cao; Jianghua Liu; Jing Zhong; Gebo Wen; Deliang Cao

Transforming growth factor-β (TGF-β) is a ubiquitous cytokine playing an essential role in cell proliferation, differentiation, apoptosis, adhesion and invasion, as well as in cellular microenvironment. In malignant diseases, TGF-β signaling features a growth inhibitory effect at an early stage but aggressive oncogenic activity at the advanced malignant state. Here, we update the current understanding of TGF-β signaling in cancer development and progression with a focus on breast cancer. We also review the current approaches of TGF-β signaling-targeted therapeutics for human malignancies.


Molecular and Cellular Biochemistry | 2012

Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells

Xing Liu; Qing-Hai Zhang; Guang-Hui Yi

Sphingosine-1-phosphate (S1P), which is generated from the sphingosine kinase-catalyzed phosphorylation of sphingosine, is now recognized as a critical regulator of many kinds of physiological and pathological processes, including cancer, cardiovascular function, and diabetes. It can also trigger a wide variety of biological effect, such as cell movement, differentiation, survival, inflammation, immunity, calcium homeostasis, and angiogenesis. As we know, a number of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface or intracellular targets. However, the synthesis and the secretion of S1P are regulated by various endogenetic or ectogenous stimuli and involve many kinds of enzymes and transporters. In this review, we discuss the regulation of S1P synthesis by many kinds of enzymes and mainly introduce the process of ceramide to S1P. Moreover, S1P deterioration is important balance in physiologic adjustment. We also describe the role of verified or potential transporters in S1P release in detail.


Recent Patents on Anti-cancer Drug Discovery | 2012

ATP Citrate Lyase Inhibitors as Novel Cancer Therapeutic Agents

Xuyu Zu; Qing-Hai Zhang; Jianghua Liu; Renxian Cao; Jing Zhong; Guang-Hui Yi; Zhihua Quan; Giuseppe Pizzorno

ATP citrate lyase (ACL or ACLY) is an extra-mitochondrial enzyme widely distributed in various human and animal tissues. ACL links glucose and lipid metabolism by catalyzing the formation of acetyl-CoA and oxaloacetate from citrate produced by glycolysis in the presence of ATP and CoA. ACL is aberrantly expressed in many immortalized cells and tumors, such as breast, liver, colon, lung and prostate cancers, and is correlated reversely with tumor stage and differentiation, serving as a negative prognostic marker. ACL is an upstream enzyme of the long chain fatty acid synthesis, providing acetyl-CoA as an essential component of the fatty acid synthesis. Therefore, ACL is a key enzyme of cellular lipogenesis and potent target for cancer therapy. As a hypolipidemic strategy of metabolic syndrome and cancer treatment, many small chemicals targeting ACL have been designed and developed. This review article provides an update for the research and development of ACL inhibitors with a focus on their patent status, offering a new insight into their potential application.


Biochemical and Biophysical Research Communications | 2012

An involvement of SR-B1 mediated PI3K-Akt-eNOS signaling in HDL-induced cyclooxygenase 2 expression and prostacyclin production in endothelial cells.

Qing-Hai Zhang; Xuyu Zu; Renxian Cao; Jianghua Liu; Zhong-Cheng Mo; Ying Zeng; Yuan-Bin Li; Sheng-Lin Xiong; Xing Liu; Duan-Fang Liao; Guang-Hui Yi

It is well-known that sphingosine-1-phosphate (S1P), the phospholipid content of HDL, binding to S1P receptors can raise COX-2 expression and PGI(2) release through p38MAPK/CREB pathway. In the present study we assess the action of SR-B1 initiated PI3K-Akt-eNOS signaling in the regulation of COX-2 expression and PGI(2) production in response to HDL. We found that apoA1 could increase PGI(2) release and COX-2 expression in ECV 304 endothelial cells. Furthermore, SR-B1 was found to be involved in HDL induced up-regulation of COX-2 and PGI(2). Over-expressed SR-B1 did not significantly increase the expression of COX-2 and the PGI(2) levels, but knock-down of SR-B1 by siRNA could significantly attenuate COX-2 expression and PGI(2) release together with p38MAPK and CREB phosphorylation. Consistently, the declines of p-p38MAPK, p-CREB, COX-2 and PGI(2) were also observed after incubation with LY294002 (25μmol/L; PI3K special inhibitor) or L-NAME (50μmol/L; eNOS special inhibitor). In addition, we demonstrated the increases of PGI(2) release, COX-2 expression and p38MAPK phosphorylation, when nitric oxide level was raised through the incubation of L-arginine (10 or 20nmol/L) in endothelial cells. Taking together, our data support that SR-B1 mediated PI3K-Akt-eNOS signaling was involved in HDL-induced COX-2 expression and PGI(2) release in endothelial cells.


Molecules | 2013

Chemical Genetics of Acetyl-CoA Carboxylases

Xuyu Zu; Jing Zhong; Dixian Luo; Jingjing Tan; Qing-Hai Zhang; Ying Wu; Jianghua Liu; Renxian Cao; Gebo Wen; Deliang Cao

Chemical genetic studies on acetyl-CoA carboxylases (ACCs), rate-limiting enzymes in long chain fatty acid biosynthesis, have greatly advanced the understanding of their biochemistry and molecular biology and promoted the use of ACCs as targets for herbicides in agriculture and for development of drugs for diabetes, obesity and cancers. In mammals, ACCs have both biotin carboxylase (BC) and carboxyltransferase (CT) activity, catalyzing carboxylation of acetyl-CoA to malonyl-CoA. Several classes of small chemicals modulate ACC activity, including cellular metabolites, natural compounds, and chemically synthesized products. This article reviews chemical genetic studies of ACCs and the use of ACCs for targeted therapy of cancers.


Clinica Chimica Acta | 2013

HDL drug carriers for targeted therapy

Xing Liu; Rong Suo; Sheng-Lin Xiong; Qing-Hai Zhang; Guang-Hui Yi

Plasma concentrations of high-density lipoprotein cholesterol (HDL-C) are strongly and inversely associated with cardiovascular risk. HDL is not a simple lipid transporter, but possesses multiple anti-atherosclerosis activities because it contains special proteins, signaling lipid, and microRNAs. Natural or recombinant HDLs have emerged as potential carriers for delivering a drug to a specified target. However, HDL function also depends on enzymes that alter its structure and composition, as well as cellular receptors and membrane micro-domains that facilitate interactions with the microenvironment. In this review, four mechanisms predicted to enhance functions or targeted therapy of HDL in vivo are discussed. The first involves caveolae-mediated recruitment of HDL signal to bind their receptors. The second involves scavenger receptor class B type I (SR-BI) mediating anchoring and fluidity for signal-lipid of HDL. The third involves lecithin-cholesterol acyltransferase (LCAT) concentrating the signaling lipid at the surface of the HDL particle. The fourth involves microRNAs (miRNAs) being delivered in the blood to special targets by HDL. Exploitation of these four mechanisms will promote HDL to carry targeted drugs and increase HDLs clinical value.


DNA and Cell Biology | 2015

Involvement of the IRE1α-XBP1 Pathway and XBP1s-Dependent Transcriptional Reprogramming in Metabolic Diseases

Rong Wu; Qing-Hai Zhang; Yan-Ju Lu; Kun Ren; Guang-Hui Yi

The X-box binding protein 1 (XBP1) is not only an important component of the unfolded protein response (UPR), but also an important nuclear transcription factor. Upon endoplasmic reticulum stress, XBP1 is spliced by inositol-requiring enzyme 1 (IRE1), thereby generating functional spliced XBP1 (XBP1s). XBP1s functions by translocating into the nucleus to initiate transcriptional programs that regulate a subset of UPR- and non-UPR-associated genes involved in the pathophysiological processes of various diseases. Recent reports have implicated XBP1 in metabolic diseases. This review summarizes the effects of XBP1-mediated regulation on lipid metabolism, glucose metabolism, obesity, and atherosclerosis. Additionally, for the first time, we present XBP1s-dependent transcriptional reprogramming in metabolic diseases under different conditions, including pathology and physiology. Understanding the function of XBP1 in metabolic diseases may provide a basic knowledge for the development of novel therapeutic targets for ameliorating these diseases.


International Journal of Molecular Medicine | 2015

TGF-β1 induces HMGA1 expression in human breast cancer cells: Implications of the involvement of HMGA1 in TGF-β signaling

Xuyu Zu; Jing Xi Zhong; Jingjing Tan; Li Tan; Dong Hee Yang; Qing-Hai Zhang; Wenjun Ding; Wen Bin Liu; Gebo Wen; Jianghua Liu; Renxian Cao; Yuyang Jiang

Transforming growth factor-β1 (TGF-β1) signaling and high mobility group A (HMGA1) are known to play essential roles in the progression of breast cancer by inducing epithelial-mesenchymal transition. However, the correlation between TGF-β1 and HMGA1 in breast cancer cell is not yet well understood. In this study, we determined the effects of TGF-β1 on HMGA1 expression in breast cancer cells and examined the role of HMGA1 in breast cancer progression. Our results demonstrated that TGF-β1 induced the expression of HMGA1 in both MCF-7 and MDA-MB-231 breast cancer cells, as shown by RT-qPCR and immunofluorescence staining; however, the TGF-β1-induced expression of HMGA was blocked by treatment of the cells with phosphatidylinositol-3 kinase (PI3K) signaling inhibitors. Moreover, the HMGA1 promoter activity was found to be activated by TGF-β1 in the MCF-7 and MDA-MB-231 cells and we found that specificity protein 1 (Sp1) was involved in the TGF-β1-induced HMGA1 promoter activity, as shown by luciferase activity assay. Furthermore, the enforced expression of HMGA1 by transfection with a HMGA1 promoter enhanced cellular oncogenic properties, including proliferation, migration and invasion, and a tissue microarray revealed that breast tumors expressing human epidermal growth factor receptor 2 (HER2) showed higher expression levels of HMGA1 (P=0.007). In addition, higher HMGA1 expression levels were also observed in the ductal breast cancer cases compared with the lobular breast cancer cases (P=0.000). These findings establish the first link between HMGA1 and TGF-β1 in breast cancer, providing further evidence of the pivotal role of HMGA1 in breast cancer progression.


PLOS ONE | 2017

MicroRNA-32 promotes calcification in vascular smooth muscle cells: Implications as a novel marker for coronary artery calcification

Jianghua Liu; Xin-Hua Xiao; Yingying Shen; Ling Chen; Can-Xin Xu; Heng Zhao; Ying Wu; Qing-Hai Zhang; Jing Zhong; Zhenwang Tang; Changhui Liu; Qiang Zhao; Yi Zheng; Renxian Cao; Xuyu Zu

Cardiovascular calcification is one of the most severe outcomes associated with cardiovascular disease and often results in significant morbidity and mortality. Previous reports indicated that epigenomic regulation of microRNAs (miRNAs) might play important roles in vascular smooth muscle cell (VSMC) calcification. Here, we identified potential key miRNAs involved in vascular calcification in vivo and investigated the role of miR-32-5p (miR-32). According to microarray analysis, we observed increased expression of miR-125b, miR-30a, and miR-32 and decreased expression of miR-29a, miR-210, and miR-320 during the progression of vascularcalcification. Additionally, gain- and loss-of-function studies of miR-32 confirmed promotion of VSMC calcification in mice through the enhanced expression of bonemorphogenetic protein-2, runt-related transcription factor-2(RUNX2), osteopontin, and the bone-specific phosphoprotein matrix GLA protein in vitro. Moreover, miR-32 modulated vascularcalcification progression by activating phosphoinositide 3-kinase (PI3K)signaling and increasing RUNX2 expression and phosphorylation by targeting the 3′-untranslated region of phosphatase and tensin homolog Mrna (PTEN) in mouse VSMCs. Furthermore, we detected higher miR-32 levels in plasmafrom patients with coronary artery disease with coronary artery calcification (CAC) as compared with levels observed in non-CAC patients (P = 0.016), further confirming miR-32 as a critical modulator and potential diagnostic marker for CAC.


Journal of Physiology and Biochemistry | 2017

ApoA-I/SR-BI modulates S1P/S1PR2-mediated inflammation through the PI3K/Akt signaling pathway in HUVECs

Kun Ren; Yan-Ju Lu; Zhong-Cheng Mo; Xing Liu; Zhen-Li Tang; Yue Jiang; Xiao-Shan Peng; Li Li; Qing-Hai Zhang; Guang-Hui Yi

Endothelial dysfunction plays a vital role during the initial stage of atherosclerosis. Oxidized low-density lipoprotein (ox-LDL) induces vascular endothelial injury and vessel wall inflammation. Sphingosine-1-phosphate (S1P) exerts numerous vasoprotective effects by binding to diverse S1P receptors (S1PRs; S1PR1-5). A number of studies have shown that in endothelial cells (ECs), S1PR2 acts as a pro-atherosclerotic mediator by stimulating vessel wall inflammation through the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Scavenger receptor class B member I (SR-BI), a high-affinity receptor for apolipoprotein A-I (apoA-I)/high-density lipoprotein (HDL), inhibits nuclear factor-κB (NF-κB) translocation and decreases the plasma levels of inflammatory mediators via the PI3K/Akt pathway. We hypothesized that the inflammatory effects of S1P/S1PR2 on ECs may be regulated by apoA-I/SR-BI. The results showed that ox-LDL, a pro-inflammatory factor, augmented the S1PR2 level in human umbilical vein endothelial cells (HUVECs) in a dose- and time-dependent manner. In addition, S1P/S1PR2 signaling influenced the levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-10, aggravating inflammation in HUVECs. Moreover, the pro-inflammatory effects induced by S1P/S1PR2 were attenuated by SR-BI overexpression and enhanced by an SR-BI inhibitor, BLT-1. Further experiments showed that the PI3K/Akt signaling pathway was involved in this process. Taken together, these results demonstrate that apoA-I/SR-BI negatively regulates S1P/S1PR2-mediated inflammation in HUVECs by activating the PI3K/Akt signaling pathway.

Collaboration


Dive into the Qing-Hai Zhang's collaboration.

Top Co-Authors

Avatar

Guang-Hui Yi

University of South China

View shared research outputs
Top Co-Authors

Avatar

Renxian Cao

University of South China

View shared research outputs
Top Co-Authors

Avatar

Xuyu Zu

University of South China

View shared research outputs
Top Co-Authors

Avatar

Jianghua Liu

University of South China

View shared research outputs
Top Co-Authors

Avatar

Jing Zhong

University of South China

View shared research outputs
Top Co-Authors

Avatar

Xing Liu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Gebo Wen

University of South China

View shared research outputs
Top Co-Authors

Avatar

Kun Ren

University of South China

View shared research outputs
Top Co-Authors

Avatar

Zhong-Cheng Mo

University of South China

View shared research outputs
Top Co-Authors

Avatar

Xiao-Shan Peng

University of South China

View shared research outputs
Researchain Logo
Decentralizing Knowledge