Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhong-Cheng Mo is active.

Publication


Featured researches published by Zhong-Cheng Mo.


Atherosclerosis | 2009

Eicosapentaenoic acid reduces ABCA1 serine phosphorylation and impairs ABCA1-dependent cholesterol efflux through cyclic AMP/protein kinase A signaling pathway in THP-1 macrophage-derived foam cells.

Yan-Wei Hu; Xin Ma; Xiao-Xu Li; Xie-Hong Liu; Ji Xiao; Zhong-Cheng Mo; Jim Xiang; Duan-Fang Liao; Chao-Ke Tang

ABCA1 is a key mediator of cholesterol efflux to apoA-I in cholesterol loaded macrophages, a first step of RCT in vivo. Unsaturated fatty acids can inhibit cholesterol efflux from macrophages by increasing degradation of ABCA1. However, the detailed mechanisms of ABCA1 regulation by unsaturated fatty acids are not fully understood. In the present study, we investigated the effects of EPA on ABCA1 expression and ABCA1-dependent cholesterol efflux and examined the role of cAMP/PKA pathway on the regulation of ABCA1 by EPA in THP-1 macrophage-derived foam cells. Results showed that EPA significantly destabilized ABCA1 protein and reduced ABCA1-dependent cholesterol efflux but had no effect on ABCA1 mRNA expression. We also revealed that EPA markedly reduced cAMP level and PKA activity and ABCA1 serine phosphorylation. PKA-specific activation by PKA agonist markedly compensated the down-regulation of ABCA1 serine phosphorylation and ABCA1-mediated cholesterol efflux by EPA, while, siRNA of PKA leaded to reduce of ABCA1 serine phosphorylation and ABCA1-mediated cholesterol efflux more significantly than EPA. However, EPA-Induced enhancement of degradation rate of ABCA1 protein did not change by treatment with PKA agonist or PKA-siRNA. These results provide evidence that EPA may have dual negative effects on ABCA1 activity by decreasing ABCA1 protein level and by reducing PKA-mediated ABCA1 serine phosphorylation in THP-1 macrophage-derived foam cells.


Journal of Biological Chemistry | 2011

Tristetraprolin-dependent post-transcriptional regulation of inflammatory cytokine mRNA expression by apolipoprotein A-I: role of ATP-binding membrane cassette transporter A1 and signal transducer and activator of transcription 3.

Kai Yin; Xiang Deng; Zhong-Cheng Mo; Guo-Jun Zhao; Jin Jiang; Li-Bao Cui; Chun-Zhi Tan; Ge-Bo Wen; Yuchang Fu; Chao-Ke Tang

Atherosclerosis is an inflammatory disease characterized by the accumulation of macrophages in the arterial intima. The activated macrophages secreted more pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, which promote the development of the disease. Apolipoprotein A-I (apoA-I), the major component of high density lipoprotein, is involved in reverse cholesterol transport of lipid metabolism. Recently, it has been found that apoA-I suppresses inflammation via repression of inflammatory cytokine expression; the mechanisms of the apoA-I-suppressive action, however, are not yet well characterized. In this study, we have for the first time found that apoA-I suppresses the expression of some inflammatory cytokines induced by lipopolysaccharide via a specific post-transcriptional regulation process, namely mRNA destabilization, in macrophages. Our further studies have also shown that AU-rich elements in the 3′-untranslated region of TNF-α mRNA are responsive to the apoA-I-mediated mRNA destabilization. The apoA-I-induced inflammatory cytokine mRNA destabilization was associated with increased expression of mRNA-destabilizing protein tristetraprolin through a JAK2/STAT3 signaling pathway-dependent manner. When blocking interaction of apoA-I with ATP-binding membrane cassette transporter A1 (ABCA1), a major receptor for apoA-I in macrophages, it would almost totally abolish the effect of apoA-I on tristetraprolin expression. These results present not only a novel mechanism for the apoA-I-mediated inflammation suppression in macrophages but also provide new insights for developing strategies for modulating vascular inflammation and atherosclerosis.


Atherosclerosis | 2012

PAPP-A negatively regulates ABCA1, ABCG1 and SR-B1 expression by inhibiting LXRα through the IGF-I-mediated signaling pathway.

Shi-Lin Tang; Wu-Jun Chen; Kai Yin; Guo-Jun Zhao; Zhong-Cheng Mo; Yun-Cheng Lv; Xin-Ping Ouyang; Xiao-Hua Yu; Huai-Jun Kuang; Zhi-sheng Jiang; Yuchang Fu; Chao-Ke Tang

Pregnancy-associated plasma protein-A (PAPP-A) has been involved in the atherosclerotic process through regulation of local expression of IGF-1 that mediates the activation of the phosphatidylinositol-3 (PI3-K) and Akt kinase (Akt) signaling cascades which lead to constitutive nitric oxide formation, with its attending vasodilator, antiplatelet and insulin-sensitizing actions. In addition, IGF-1 may decreased cholesterol efflux through reductions of expression in ABCA1 and SR-B1 by the PI3-K/Akt signaling pathway. In the current study, we examined whether PAPP-A was involved in LXRα regulation and in expression of ABCA1, ABCG1 or SR-B1 through the IGF-I-mediated signaling pathway (IGF/PI3-K/Akt). Results showed that PAPP-A significantly decreased expression of ABCA1, ABCG1 and SR-BI at both transcriptional and translational levels in a dose-dependent and time-dependent manner. Cellular cholesterol content was increased while cholesterol efflux was decreased by PAPP-A treatment. Moreover, LXRα which can regulate the expression of ABCA1, ABCG1 and SR-B1, was also down-regulated by PAPP-A treatment. LXRα-specific activation by LXRα agonist almost rescued the down-regulation of ABCA1, ABCG1 and SR-B1 expression by PAPP-A. In addition, PAPP-A can induce the IGF-1/PI3-K/Akt pathway in macrophages. Furthermore, our results indicate that the decreased levels observed in LXRα, ABCA1, ABCG1 and SR-B1 mRNA and protein levels upon treating cells with PAPP-A were strongly impaired with the PI3-K inhibitors or IGF-1R siRNA while the MAPK cascade inhibitor did not execute this effect, indicating that the process of ABCA1, ABCG1 and SR-BI degradation by PAPP-A involves the IGF-1/PI3-K/Akt pathway. In conclusion, PAPP-A may first down-regulate expression of LXRα through the IGF-1/PI3-K/Akt signaling pathway and then decrease expression of ABCA1, ABCG1, SR-B1 and cholesterol efflux in THP-1 macrophage-derived foam cells. Therefore, our study provided one of the mechanisms for understanding the critical effect of PAPP-A in pathogenesis of atherosclerosis.


Biochemical and Biophysical Research Communications | 2012

An involvement of SR-B1 mediated PI3K-Akt-eNOS signaling in HDL-induced cyclooxygenase 2 expression and prostacyclin production in endothelial cells.

Qing-Hai Zhang; Xuyu Zu; Renxian Cao; Jianghua Liu; Zhong-Cheng Mo; Ying Zeng; Yuan-Bin Li; Sheng-Lin Xiong; Xing Liu; Duan-Fang Liao; Guang-Hui Yi

It is well-known that sphingosine-1-phosphate (S1P), the phospholipid content of HDL, binding to S1P receptors can raise COX-2 expression and PGI(2) release through p38MAPK/CREB pathway. In the present study we assess the action of SR-B1 initiated PI3K-Akt-eNOS signaling in the regulation of COX-2 expression and PGI(2) production in response to HDL. We found that apoA1 could increase PGI(2) release and COX-2 expression in ECV 304 endothelial cells. Furthermore, SR-B1 was found to be involved in HDL induced up-regulation of COX-2 and PGI(2). Over-expressed SR-B1 did not significantly increase the expression of COX-2 and the PGI(2) levels, but knock-down of SR-B1 by siRNA could significantly attenuate COX-2 expression and PGI(2) release together with p38MAPK and CREB phosphorylation. Consistently, the declines of p-p38MAPK, p-CREB, COX-2 and PGI(2) were also observed after incubation with LY294002 (25μmol/L; PI3K special inhibitor) or L-NAME (50μmol/L; eNOS special inhibitor). In addition, we demonstrated the increases of PGI(2) release, COX-2 expression and p38MAPK phosphorylation, when nitric oxide level was raised through the incubation of L-arginine (10 or 20nmol/L) in endothelial cells. Taking together, our data support that SR-B1 mediated PI3K-Akt-eNOS signaling was involved in HDL-induced COX-2 expression and PGI(2) release in endothelial cells.


Journal of Cardiovascular Pharmacology | 2010

Contribution of D4-F to ABCA1 expression and cholesterol efflux in THP-1 macrophage-derived foam cells.

Xie-Hong Liu; Ji Xiao; Zhong-Cheng Mo; Kai Yin; Jin Jiang; Li-Bao Cui; Chun-Zhi Tan; Ya-Ling Tang; Duan-Fang Liao; Chao-Ke Tang

Adenosine triphosphate-binding cassette transporter A1 (ABCA1) plays a crucial role in apolipoprotein A-I (apoA-I) binding activity and promotes cellular cholesterol efflux. ApoA-I mimetic peptide D4-F has reported to have the similar ability as apoA-I. However, the detailed mechanisms of ABCA1 regulation by D4-F are not understood. In the present study, we investigated the effects of D4-F on ABCA1 expression and ABCA1-dependent cholesterol efflux and examined the role of Cdc42/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway on the regulation of ABCA1 by D4-F in THP-1 macrophage-derived foam cells. Results showed that D4-F stabilized ABCA1 protein and enhanced ABCA1-dependent cholesterol efflux but had no effect on ABCA1 messenger RNA expression. We also revealed that D4-F enhanced cAMP level and PKA activity and ABCA1 serine phosphorylation. Short interfering RNA of PKA led to reduction of ABCA1 serine phosphorylation and ABCA1-mediated cholesterol efflux compensated by D4-F. PKA-specific activation by PKA agonist enhanced the upregulation of ABCA1 serine phosphorylation and ABCA1-mediated cholesterol efflux by D4-F. However, ABCA1 expression did not change by treatment with PKA agonist or PKA-short interfering RNA. We found that secramine B of Cdc42 inhibitor reduced the cAMP level compensated by D4-F. These results provide evidence that D4-F enhances ABCA1 serine phosphorylation and ABCA1-dependent cholesterol efflux through Cdc42/cAMP/PKA pathway in THP-1 macrophage-derived foam cells.


Acta Pharmacologica Sinica | 2010

Ibrolipim increases ABCA1/G1 expression by the LXRα signaling pathway in THP-1 macrophage-derived foam cells

Si-guo Chen; Ji Xiao; Xie-Hong Liu; Meimei Liu; Zhong-Cheng Mo; Kai Yin; Guo-Jun Zhao; Jin Jiang; Li-Bao Cui; Chun-Zhi Tan; Weidong Yin; Chao-Ke Tang

Aim:To determine the effects and potential mechanisms of ibrolipim on ATP-binding membrane cassette transporter A-1 (ABCA1) and ATP-binding membrane cassette transporter G-1 (ABCG1) expression from human macrophage foam cells, which may play a critical role in atherogenesis.Methods:Human THP-1 cells pre-incubated with ox-LDL served as foam cell models. Specific mRNA was quantified using real-time RT-PCR and protein expression using Western blotting. Cellular cholesterol handling was studied using cholesterol efflux experiments and high performance liquid chromatography assays.Results:Ibrolipim 5 and 50 μmol/L significantly increased cholesterol efflux from THP-1 macrophage-derived foam cells to apoA-I or HDL. Moreover, it upregulated the expression of ABCA1 and ABCG1. In addition, LXRα was also upregulated by the ibrolipim treatment. In addition, LXRα small interfering RNA completely abolished the promotion effect that was induced by ibrolipim.Conclusion:Ibrolipim increased ABCA1 and ABCG1 expression and promoted cholesterol efflux, which was mediated by the LXRα signaling pathway.


Advanced Drug Delivery Reviews | 2016

A high-density lipoprotein-mediated drug delivery system

Zhong-Cheng Mo; Kun Ren; Xing Liu; Zhen-Li Tang; Guang-Hui Yi

High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier.


Acta Biochimica et Biophysica Sinica | 2012

OxLDL up-regulates Niemann-Pick type C1 expression through ERK1/2/COX-2/PPARα-signaling pathway in macrophages.

Xiao-Hua Yu; Xiao-Xu Li; Guo-Jun Zhao; Ji Xiao; Zhong-Cheng Mo; Kai Yin; Zhi-Sheng Jiang; Yuchang Fu; Xiaohui Zha; Chao-Ke Tang

The Niemann-Pick type C1 (NPC1) is located mainly in the membranes of the late endosome/lysosome and controls the intracellular cholesterol trafficking from the late endosome/lysosome to the plasma membrane. It has been reported that oxidized low-density lipoprotein (oxLDL) can up-regulate NPC1 expression. However, the detailed mechanisms are not fully understood. In this study, we investigated the effect of oxLDL stimulation on NPC1 expression in THP-1 macrophages. Our results showed that oxLDL up-regulated NPC1 expression at both mRNA and protein levels in a dose-dependent and time-dependent manner. In addition, oxLDL also induced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). Treatment with oxLDL significantly increased cyclooxygenase-2 (COX-2) mRNA and protein expression in the macrophages, and these increases were suppressed by the ERK1/2 inhibitor PD98059 or ERK1/2 small interfering RNA (siRNA) treatment. OxLDL up-regulated the expression of peroxisome proliferator-activated receptor α (PPARα) at the mRNA and protein levels, which could be abolished by COX-2 siRNA or COX-2 inhibitor NS398 treatment in these macrophages. OxLDL dramatically elevated cellular cholesterol efflux, which was abrogated by inhibiting ERK1/2 and/or COX-2. In addition, oxLDL-induced NPC1 expression and cellular cholesterol efflux were reversed by PPARα siRNA or GW6471, an antagonist of PPARα. Taken together, these results provide the evidence that oxLDL can up-regulate the expression of the NPC1 through ERK1/2/COX-2/PPARα-signaling pathway in macrophages.


PLOS ONE | 2016

Histone Methyltransferase Enhancer of Zeste Homolog 2-Mediated ABCA1 Promoter DNA Methylation Contributes to the Progression of Atherosclerosis

Yun-Cheng Lv; Yan-Yan Tang; Ping Zhang; Feng Yao; Ping-Ping He; Wei Xie; Zhong-Cheng Mo; Jin-Feng Shi; Jian-Feng Wu; Juan Peng; Dan Liu; Francisco S. Cayabyab; Xi-Long Zheng; Xiang-Yang Tang; Xin-Ping Ouyang; Chao-Ke Tang

ATP-binding cassette transporter A1 (ABCA1) plays a critical role in maintaining cellular cholesterol homeostasis. The purpose of this study is to identify the molecular mechanism(s) underlying ABCA1 epigenetic modification and determine its potential impact on ABCA1 expression in macrophage-derived foam cell formation and atherosclerosis development. DNA methylation induced foam cell formation from macrophages and promoted atherosclerosis in apolipoprotein E-deficient (apoE−/−) mice. Bioinformatics analyses revealed a large CpG island (CGI) located in the promoter region of ABCA1. Histone methyltransferase enhancer of zeste homolog 2 (EZH2) downregulated ABCA1 mRNA and protein expression in THP-1 and RAW264.7 macrophage-derived foam cells. Pharmacological inhibition of DNA methyltransferase 1 (DNMT1) with 5-Aza-dC or knockdown of DNMT1 prevented the downregulation of macrophage ABCA1 expression, suggesting a role of DNA methylation in ABCA1 expression. Polycomb protein EZH2 induced DNMT1 expression and methyl-CpG-binding protein-2 (MeCP2) recruitment, and stimulated the binding of DNMT1 and MeCP2 to ABCA1 promoter, thereby promoting ABCA1 gene DNA methylation and atherosclerosis. Knockdown of DNMT1 inhibited EZH2-induced downregulation of ABCA1 in macrophages. Conversely, EZH2 overexpression stimulated DNMT1-induced ABCA1 gene promoter methylation and atherosclerosis. EZH2-induced downregulation of ABCA1 gene expression promotes foam cell formation and the development of atherosclerosis by DNA methylation of ABCA1 gene promoter.


Journal of Physiology and Biochemistry | 2017

ApoA-I/SR-BI modulates S1P/S1PR2-mediated inflammation through the PI3K/Akt signaling pathway in HUVECs

Kun Ren; Yan-Ju Lu; Zhong-Cheng Mo; Xing Liu; Zhen-Li Tang; Yue Jiang; Xiao-Shan Peng; Li Li; Qing-Hai Zhang; Guang-Hui Yi

Endothelial dysfunction plays a vital role during the initial stage of atherosclerosis. Oxidized low-density lipoprotein (ox-LDL) induces vascular endothelial injury and vessel wall inflammation. Sphingosine-1-phosphate (S1P) exerts numerous vasoprotective effects by binding to diverse S1P receptors (S1PRs; S1PR1-5). A number of studies have shown that in endothelial cells (ECs), S1PR2 acts as a pro-atherosclerotic mediator by stimulating vessel wall inflammation through the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Scavenger receptor class B member I (SR-BI), a high-affinity receptor for apolipoprotein A-I (apoA-I)/high-density lipoprotein (HDL), inhibits nuclear factor-κB (NF-κB) translocation and decreases the plasma levels of inflammatory mediators via the PI3K/Akt pathway. We hypothesized that the inflammatory effects of S1P/S1PR2 on ECs may be regulated by apoA-I/SR-BI. The results showed that ox-LDL, a pro-inflammatory factor, augmented the S1PR2 level in human umbilical vein endothelial cells (HUVECs) in a dose- and time-dependent manner. In addition, S1P/S1PR2 signaling influenced the levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-10, aggravating inflammation in HUVECs. Moreover, the pro-inflammatory effects induced by S1P/S1PR2 were attenuated by SR-BI overexpression and enhanced by an SR-BI inhibitor, BLT-1. Further experiments showed that the PI3K/Akt signaling pathway was involved in this process. Taken together, these results demonstrate that apoA-I/SR-BI negatively regulates S1P/S1PR2-mediated inflammation in HUVECs by activating the PI3K/Akt signaling pathway.

Collaboration


Dive into the Zhong-Cheng Mo's collaboration.

Top Co-Authors

Avatar

Chao-Ke Tang

University of South China

View shared research outputs
Top Co-Authors

Avatar

Guo-Jun Zhao

University of South China

View shared research outputs
Top Co-Authors

Avatar

Kai Yin

University of South China

View shared research outputs
Top Co-Authors

Avatar

Yun-Cheng Lv

University of South China

View shared research outputs
Top Co-Authors

Avatar

Xin-Ping Ouyang

University of South China

View shared research outputs
Top Co-Authors

Avatar

Guang-Hui Yi

University of South China

View shared research outputs
Top Co-Authors

Avatar

Ji Xiao

University of South China

View shared research outputs
Top Co-Authors

Avatar

Jin Jiang

University of South China

View shared research outputs
Top Co-Authors

Avatar

Kun Ren

University of South China

View shared research outputs
Top Co-Authors

Avatar

Ping-Ping He

University of South China

View shared research outputs
Researchain Logo
Decentralizing Knowledge