Qingfei Wang
Peking University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qingfei Wang.
Small | 2015
Qingfei Wang; Ruqiang Zou; Wei Xia; Jin Ma; Bin Qiu; Asif Mahmood; Ruo Zhao; Yangyuchen Yang; Dingguo Xia; Qiang Xu
Cobalt sulfide (CoS2) is considered one of the most promising alternative anode materials for high-performance lithium-ion batteries (LIBs) by virtue of its remarkable electrical conductivity, high theoretical capacity, and low cost. However, it suffers from a poor cycling stability and low rate capability because of its volume expansion and dissolution of the polysulfide intermediates in the organic electrolytes during the battery charge/discharge process. In this study, a novel porous carbon/CoS2 composite is prepared by using nano metal-organic framework (MOF) templates for high-preformance LIBs. The as-made ultrasmall CoS2 (15 nm) nanoparticles in N-rich carbon exhibit promising lithium storage properties with negligible loss of capacity at high charge/discharge rate. At a current density of 100 mA g(-1), a capacity of 560 mA h g(-1) is maintained after 50 cycles. Even at a current density as high as 2500 mA g(-1), a reversible capacity of 410 mA h g(-1) is obtained. The excellent and highly stable battery performance should be attributed to the synergism of the ultrasmall CoS2 particles and the thin N-rich porous carbon shells derieved from nanosized MOF precusors.
Chemistry-an Asian Journal | 2013
Qingfei Wang; Wei Xia; Wenhan Guo; Li An; Dingguo Xia; Ruqiang Zou
Three types of zeolitic imidazolate frameworks (ZIFs) with different topological structures and functional imidazolate-derived ligands, namely, ZIF-8, ZIF-68, and ZIF69, have been directly carbonized to prepare porous carbon materials at 1000 °C. These as-synthesized porous carbon materials were activated with fused KOH to increase their surface areas and pore volumes for use in gas storage and supercapacitors. The relationship between the local structure of the products and the composition of the precursors has been investigated in detail. The BET surface areas of the resultant activated carbon materials are 2437 (CZIF8a), 1861 (CZIF68a), and 2264 m(2) g(-1) (CZIF69a). CZIF8a exhibits the highest H2 -storage capacities of 2.59 wt.% at 1 atm and 77 K, whereas CZIF69a has the highest CO2 uptake of 4.76 mmol g(-1) at 1 atm and 273 K, owing to its local structure and pore chemical environment. The specific capacities are calculated from the CV curves. CZIF69a exhibits the highest supercapacitor performance of 168 F g(-1) at a scan speed of 5 mV s(-1). These results indicate that the functional chloride group on the benzimidazolate ligand plays a very important role in improving the surface area, pore volume, and, therefore, CO2-capture and supercapacitor properties of the corresponding porous carbon materials.
ACS Applied Materials & Interfaces | 2016
Asif Mahmood; Ruqiang Zou; Qingfei Wang; Wei Xia; Hassina Tabassum; Bin Qiu; Ruo Zhao
This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.
Scientific Reports | 2015
Asif Mahmood; Wei Xia; Nasir Mahmood; Qingfei Wang; Ruqiang Zou
Hierarchical heteronuclear metal-organic gels (MOGs) based on iron (Fe) and aluminium (Al) metal-organic framework (MOF) backbones bridged by tri-carboxylate ligands have firstly been synthesized by simple solvothermal method. Monometallic MOGs based on Fe or Al give homogenous monoliths, which have been tuned by introduction of heterogeneity in the system (mismatched growth). The developed gels demonstrate that surface areas, pore volumes and pore sizes can be readily tuned by optimizing heterogeneity. The work also elaborates effect of heterogeneity on size of MOG particles which increase substantially with increasing heterogeneity as well as obtaining mixed valence sites in the gels. High surface areas (1861 m2/g) and pore volumes (9.737 cc/g) were obtained for heterogeneous gels (0.5Fe-0.5Al). The large uptakes of dye molecules (290 mg/g rhodamine B and 265 mg/g methyl orange) with fast sorption kinetics in both neutral and acidic mediums show good stability and accessibility of MOG channels (micro and meso-/macropores), further demonstrating their potential applications in catalysis and sorption of large molecules.
Advanced Materials | 2018
Hassina Tabassum; Ruqiang Zou; Asif Mahmood; Zibin Liang; Qingfei Wang; Hao Zhang; Song Gao; Chong Qu; Wenhan Guo; Shaojun Guo
Yolk-shell nanostructures have received great attention for boosting the performance of lithium-ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li+ ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co-doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni2 O3 , Mn3 O4 ) through combining pyrolysis with an oxidation method is reported herein. The as-made TMO@BNG exhibits the TMO-dependent lithium-ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium-ion storage capacity of 1554 mA h g-1 at the current density of 96 mA g-1 , good rate ability (410 mA h g-1 at 1.75 A g-1 ), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability.
RSC Advances | 2017
Bin Qiu; Wenhan Guo; Zibin Liang; Wei Xia; Song Gao; Qingfei Wang; Xiaofeng Yu; Ruo Zhao; Ruqiang Zou
Cobalt oxides, typically Co3O4, have received considerable attention due to their high theoretical capacity as anode materials for Li-ion batteries. However, their poor electron conductivity and large volume change upon the insertion/removal of Li+ ions limit their practical application. Carbon coating is widely used to improve the electrochemical performance of materials and release the strain during the lithiation/delithiation processes, in which the thickness of the coating carbon shell has a vital role in determining the performance of the material. In this study, Co3O4 nanoparticles coated with a thin carbon shell are obtained from the metal–organic framework (MOF) precursor Co-MOF-74 via a sequential two-step carbonization process, where carbon oxides, e.g., CO2, are used as the oxidation atmosphere in the second step. The carbon content and shell thickness are controlled by changing the calcination time. The electrode containing a certain carbon content (3.17 wt%) exhibits a capacity of 1137 mA h g−1 after 100 cycles tested at 100 mA g−1 between 0.005 and 3.0 V. This enhanced electrochemical performance is attributed to the well-dispersed nanosized Co3O4 particles and thin carbon shell coating on the electrode surface, which shorten the Li+ ion diffusion length and enhance the electron conductivity of the hybrid.
Scientific Reports | 2017
Hassina Tabassum; Asif Mahmood; Qingfei Wang; Wei Xia; Zibin Liang; Bin Qiu; Ruo Zhao; Ruqiang Zou
To cater for the demands of electrochemical energy storage system, the development of cost effective, durable and highly efficient electrode materials is desired. Here, a novel electrode material based on redox active β-Co(OH)2 and B, N co-doped graphene nanohybrid is presented for electrochemical supercapacitor by employing a facile metal-organic frameworks (MOFs) route through pyrolysis and hydrothermal treatment. The Co(OH)2 could be firmly stabilized by dual protection of N-doped carbon polyhedron (CP) and B/N co-doped graphene (BCN) nanosheets. Interestingly, the porous carbon and BCN nanosheets greatly improve the charge storage, wettability, and redox activity of electrodes. Thus the hybrid delivers specific capacitance of 1263 F g−1 at a current density of 1A g−1 with 90% capacitance retention over 5000 cycles. Furthermore, the new aqueous asymmetric supercapacitor (ASC) was also designed by using Co(OH)2@CP@BCN nanohybrid and BCN nanosheets as positive and negative electrodes respectively, which leads to high energy density of 20.25 Whkg−1. This device also exhibits excellent rate capability with energy density of 15.55 Whkg−1 at power density of 9331 Wkg−1 coupled long termed stability up to 6000 cycles.
Advanced Energy Materials | 2017
Hassina Tabassum; Wenhan Guo; Wei Meng; Asif Mahmood; Ruo Zhao; Qingfei Wang; Ruqiang Zou
Carbon | 2017
Ruo Zhao; Wei Xia; Cong Lin; Junliang Sun; Asif Mahmood; Qingfei Wang; Bin Qiu; Hassina Tabassum; Ruqiang Zou
Journal of Power Sources | 2015
Yonggang Wang; Qingfei Wang; Zhenpu Liu; Zhengyang Zhou; Shuai Li; Jinlong Zhu; Ruqiang Zou; Yingxia Wang; Jianhua Lin; Yusheng Zhao