Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qingfeng Zhai is active.

Publication


Featured researches published by Qingfeng Zhai.


Analytical Chemistry | 2016

A Nanoscale Multichannel Closed Bipolar Electrode Array for Electrochemiluminescence Sensing Platform

Qingfeng Zhai; Xiaowei Zhang; Yanchao Han; Junfeng Zhai; Jing Li; Erkang Wang

In this work, we report a nanoscale multichannel closed bipolar electrode (BPE) array based on the poly(ethylene terephthalate) (PET) membrane for the first time. With our design, oxidants, coreactants, quenchers, and even biomarkers can be detected in a Ru(bpy)3(2+)/TPA (tripropylamine) electrochemiluminescence (ECL) system. The multichannel PET membrane was etched according to our desire by NaOH, and then Au nanofibers were decorated in the inner region of the channel as a BPE array. Using ECL as a signal readout, a series of targets including TPA, Ru(bpy)3(2+), dopamine, H2O2, alpha-fetoprotein (AFP), and carcino-embryonic antigen (CEA) can be detected with this device. The practical application of the proposed multichannel closed BPE array was verified in the detection of AFP and CEA in human serum with satisfying results. This kind of nanoscale device holds promising potential for multianalysis. More importantly, as the PET membrane used in this device can be etched with a desirable diameter (nano- to microscale) and different BPE array densities (ion tracks of 10(8)/cm(2), 10(6)/cm(2), 10(4)/cm(2)), our design can be served as a useful platform for future advances in nanoscale bipolar electrochemistry.


Analytical Chemistry | 2017

Enhanced Electrochemiluminescence Behavior of Gold–Silver Bimetallic Nanoclusters and Its Sensing Application for Mercury(II)

Qingfeng Zhai; Huanhuan Xing; Xiaowei Zhang; Jing Li; Erkang Wang

Bimetallic nanoclusters (NCs) with superior performance to that of monometallic nanoclusters have attracted extensive research interest due to the synergetic effect of the two atoms. Inspired from the silver effect on the enhanced fluorescence intensity of Au NCs, a series of bovine serum albumin-protected Au-Ag bimetallic NCs were prepared by regulating the molar ratios of HAuCl4/AgNO3 and their electrochemiluminescence (ECL) property was investigated using triethylamine as co-reactant. Notably, multifold higher efficiency was achieved with Au-Ag bimetallic NCs in reference to the monometallic nanoclusters. Moreover, the doping of Ag atoms not only made the ECL emission of the Au NCs blue shift but also decreased the peak potential and onset potential, which provided an efficient and facile way to improve the ECL behavior. Based on the ECL quenching effect of Hg2+ toward Au-Ag bimetallic NCs via the formation of metallophilic bond, an ECL sensor for Hg2+ detection was proposed with good stability and high selectivity and sensitivity. These results indicated that the as-prepared Au-Ag bimetallic NCs with enhanced ECL properties can be served as an ideal luminescent material in sensing application.


Journal of Materials Chemistry B | 2014

Biomimetic nanopore for sensitive and selective detection of Hg(II) in conjunction with single-walled carbon nanotubes

Qingfeng Zhai; Siqi Zhang; Hong Jiang; Qin Wei; Erkang Wang; Jiahai Wang

In this article, we propose a new method for selective detection of Hg2+ based on a biomimetic nanopore sensing platform in combination with single-walled carbon nanotubes (SWNTs). As is well known, folded DNA in the presence of Hg2+ can be separated from single-stranded DNA through SWNTs, and the folded DNA can be quantitated with cone-shaped nanopore whose surface was coated by polyethyleneimine (PEI)/Zr4+. Both sensitivity and selectivity based on this paradigm can be guaranteed without immobilization of probes on the nanopore surface. This approach can warrant the detection limit for Hg2+ down to 8.3 nM (S/N = 3) with high selectivity against other metal ions. Moreover, the application of the sensor for lake water shows that the proposed method works well for real samples. This research demonstrates an alternative approach to detect targets of interest that holds high prospects for detecting other biomolecules or metal ions in the near future.


Analytical Chemistry | 2016

Self-Powered Bipolar Electrochromic Electrode Arrays for Direct Displaying Applications

Xiaowei Zhang; Lingling Zhang; Qingfeng Zhai; Wenling Gu; Jing Li; Erkang Wang

Here we report a self-powered-bipolar-electrochromic-electrode (termed SP-BP-EC-E) array for the displaying applications including catalyst screening, catalytic activity measurement, and enzyme substrate quantification. By replacing the directional (or active) power source with the isotropic chemical energy to drive the bipolar electrochemical reaction, the driving background signal, bipolar electrode (BPE) background signal, uneven reporting signal and the influence of electrolysis which commonly appear in traditional bipolar systems are effectively eliminated from origin. Thus, the reporting signals from the SP-BP-EC-E arrays can be more direct and reliable to reflect the target nature. Such a SP-BP-EC-E platform exhibits a sensitive response toward the fast analysis of commercial Pt black catalyst, NiPdAu hollow nanospheres, glucose dehydrogenase, and glucose. To our knowledge, this test paper-like SP-BP-EC-E is the simplest platform for high-throughput screening to date, which offers a very convenient approach for nonprofessional people to access the complicated screening and fast analysis of the electrocatalysts and biocatalyst activity and quantification of enzymatic substrates.


Biosensors and Bioelectronics | 2016

A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation

Daoqing Fan; Qingfeng Zhai; Weijun Zhou; Xiaoqing Zhu; Erkang Wang; Shaojun Dong

Herein, a gold nanoparticles (AuNPs) based label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) was constructed for the first time. Four bases (G-G mismatch) mismatched streptavidin aptamer (MSAA) was used to protect AuNPs from salt-induced aggregation and recognize Pt (II) specifically. Only in the presence of Pt (II), coordination occurs between G-G bases and Pt (II), leading to the activation of streptavidin aptamer. Streptavidin coated magnetic beads (MBs) were used as separation agent to separate Pt (II)-coordinated MSAA. The residual less amount of MSAA could not efficiently protect AuNPs anymore and aggregation of AuNPs will produce a colorimetric product. With the addition of Pt (II), a pale purple-to-blue color variation could be observed by the naked eye. A detection limit of 150nM and a linear range from 0.6μM to 12.5μM for Pt (II) could be achieved without any amplification.


Analytical Chemistry | 2017

High-Sensitivity Electrochemiluminescence Probe with Molybdenum Carbides as Nanocarriers for α-Fetoprotein Sensing

Xiaoqing Zhu; Qingfeng Zhai; Wenling Gu; Jing Li; Erkang Wang

Suitably designed electrochemiluminescence (ECL) carrying group acting as high-efficiency solid-state probe has attracted a lot of attention. Herein, molybdenum carbides with the two-dimensional ultrathin nanosheet structure on the surface and excellent conductivity were successfully employed as the nanocarriers for the capture of ECL reagent of luminol-capped Au nanoparticles (luminol-AuNPs). Notably, the luminol-AuNPs in the hybrid (luminol-AuNPs@Mo2C) exhibited enhanced ECL performance (∼6-fold) as compared to individual luminol-AuNPs because of the facilitated electron transfer process. Ultimately, the as-prepared ECL label was used to construct a label-free ECL immunosensor for the detection of α-fetoprotein (AFP). The immunosensor shows high selectivity and high sensitivity to AFP detection with a wide linear range of 0.1 pg·mL-1 to 30 ng·mL-1 and an extremely low detection limit of 0.03 pg·mL-1 (S/N = 3). Moreover, the fabricated ECL immunosensor exhibit satisfied performance in the practical application. This novel sensing strategy not only broadens the application of molybdenum carbides but also provides a new efficient approach to detect various biomolecules.


ACS Sensors | 2017

Bipolar Electrodes with 100% Current Efficiency for Sensors

Xiaowei Zhang; Qingfeng Zhai; Huanhuan Xing; Jing Li; Erkang Wang

A bipolar electrode (BPE) is an electron conductor that is embedded in the electrolyte solution without the direct connection with the external power source (driving electrode). When the sufficient voltage was provided, the two poles of BPE promote different oxidation and reduction reactions. During the past few years, BPEs with wireless feature and easy integration showed great promise in the various fields including asymmetric modification/synthesis, motion control, targets enrichment/separation, and chemical sensing/biosensing combined with the quantitative relationship between two poles of BPE. In this perspective paper, we first describe the concept and history of the BPE for analytical chemistry and then review the recent developments in the application of BPEs for sensing with ultrahigh current efficiency (ηc = iBPE/ichannel) including the open and closed bipolar system. Finally, we offer the guide for possible challenge faced and solution in the future.


Talanta | 2015

Bare conical nanopore embedded in polymer membrane for Cr(III) sensing.

Qingfeng Zhai; Jiahai Wang; Hong Jiang; Qin Wei; Erkang Wang

In this article, we propose a nanopore-based approach to detect metal ions without any external functionalization. In detection of the biologically and environmentally relevant Cr(3+) ion as a prototypical example to prove our strategy, both selectivity and sensitivity were individually achieved. In contrast to mainstream research based on receptor-functionalized nanopores, we report a method for easy regeneration of the nanopore surface that allows elimination of the tedious functionalization steps. Besides, with the assistance of a strong chelator (EDTA), the asymmetric nanopore becomes highly resistant to the interference of the metal-ions matrix, and shows significant specificity towards Cr(3+). The detection limit of this sensor was 16 nM (signal-to-noise ratio=3), which was comparable to reported values. By virtue of the reusability of the polymer surface, metal ion sensors based on asymmetric nanopores can be applied universally in combination with chelators sensitive to specific metal ions.


Analytical Chemistry | 2018

Boron Nitride Quantum Dots as Efficient Coreactant for Enhanced Electrochemiluminescence of Ruthenium(II) Tris(2,2′-bipyridyl)

Huanhuan Xing; Qingfeng Zhai; Xiaowei Zhang; Jing Li; Erkang Wang

In the present work, an enhanced and stable anodic electrochemiluminescence (ECL) was observed from a suspension of boron nitride quantum dots (BNQDs) and Ru(bpy)32+, which had a 400-fold enhancement compared with individual Ru(bpy)32+. Interestingly, different from the previous research on BNQDs as a type of optical probe, BNQDs were demonstrated as an efficient coreactant of Ru(bpy)32+-based ECL for the first time and confirmed by collecting the ECL spectra. The amino-bearing groups and the electrocatalytic effect of the BNQDs endowed them as potential coreactants for ECL of Ru(bpy)32+, and the possible mechanism of the electrode surface reaction was discussed. Several factors including electrode material, the pH of the buffer solution, and the amount of BNQDs were investigated and also further confirmed the role of the BNQDs in the proposed Ru(bpy)32+/BNQDs system. On the basis of the quenching effect between the excited state of Ru(bpy)32+ and the oxidation form of DA in the ECL system of Ru(bpy)32+/BNQDs, the ECL sensing platform for DA was successfully established. The proposed ECL system with the outstanding ECL efficiency may hold great potential in the bioanlysis because of the biocompatibility and good stability of BNQDs.


Analytical Chemistry | 2018

Point-of-Care Diagnoses: Flexible Patterning Technique for Self-Powered Wearable Sensors

Xiaowei Zhang; Yin Jing; Qingfeng Zhai; You Yu; Huanhuan Xing; Jing Li; Erkang Wang

This paper demonstrated the fabrication of a facile, low-cost, and self-powered platform for point-of-care fitness level and athletic performance monitoring sensor using electrochemical lithography method and its application in body fluid sensing. Flexible Au/prussian blue electrode was employed as the indicating electrode, where the color change was an indication of fitness level and athletic performance. A piece of Al foil, Au/multiwalled carbon nanotubes (MWCNTs)-glucose dehydrogenase, and Au/polymethylene blue-MWCNTs-lactic dehydrogenase electrodes were used for the detection of ionic strength, glucose, and lactic acid in sweat, respectively, which allows the sensor to work without any extra instrumentation and the output signal can be recognized by the naked eyes. The advantages of these sensors are (1) self-powered; (2) readily applicable to the detection of any electroactive substance by an electrochromic material; (3) easy to fabricate via two steps of EDP; and (4) point-of-care. By assembling the energy and sensing components together through a transparent adhesive tape, the proposed self-powered wearable biosensor exhibits superior performances, indicating its broad applied prospect in the point-of-care diagnoses.

Collaboration


Dive into the Qingfeng Zhai's collaboration.

Top Co-Authors

Avatar

Erkang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaowei Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huanhuan Xing

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Daoqing Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiahai Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shaojun Dong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoqing Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge