Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qingming Fang is active.

Publication


Featured researches published by Qingming Fang.


Chemical Research in Toxicology | 2008

Cross-linking of the DNA repair protein O6-alkylguanine DNA alkyltransferase to DNA in the presence of antitumor nitrogen mustards

Rachel Loeber; Erin Michaelson; Qingming Fang; Colin Campbell; Anthony E. Pegg; Natalia Tretyakova

The antitumor activity of chemotherapeutic nitrogen mustards including chlorambucil, cyclophosphamide, and melphalan is commonly attributed to their ability to induce DNA-DNA cross-links by consecutive alkylation of two nucleophilic sites within the DNA duplex. DNA-protein cross-linking by nitrogen mustards is not well characterized, probably because of its inherent complexity and the insufficient sensitivity of previous methodologies. If formed, DNA-protein conjugates are likely to contribute to both target and off-target cytotoxicity of nitrogen mustard drugs. Here, we show that the DNA repair protein, O (6)-alkylguanine DNA alkyltransferase (AGT), can be readily cross-linked to DNA in the presence of nitrogen mustards. Both chlorambucil and mechlorethamine induced the formation of covalent conjugates between (32)P-labeled double-stranded oligodeoxynucleotides and recombinant human AGT protein, which were detected by SDS-PAGE. Capillary HPLC-electrospray ionization mass spectrometry (ESI-MS) analysis of AGT that had been treated with the guanine half-mustards of chlorambucil or mechlorethamine revealed the ability of the protein to form either one or two cross-links to guanine. C145A AGT (a variant containing a single point mutation in the proteins active site) was found capable of forming a single guanine conjugate, while cross-linking was virtually abolished upon treatment of the C145A/C150S AGT double mutant with the guanine half-mustards. HPLC-ESI (+)-MS/MS sequencing of tryptic peptides obtained from the wild-type AGT protein that had been treated with nitrogen mustards in the presence of DNA confirmed that the cross-linking took place between the N7 position of guanine in DNA and two active site residues within the AGT protein (Cys (145) and Cys (150)). The exact chemical structures of AGT-DNA cross-links induced by chlorambucil and mechlorethamine were identified as N-(2-[ S-cysteinyl]ethyl)- N-(2-[guan-7-yl]ethyl)- p-aminophenylbuyric acid and N-(2-[ S-cysteinyl]ethyl)- N-(2-[guan-7-yl]ethyl)methylamine, respectively, based upon HPLC-MS/MS analysis of protein hydrolysates in parallel with the corresponding amino acid conjugates prepared synthetically. Mechlorethamine-induced AGT-DNA conjugates were isolated from protein extracts of AGT-expressing CHO cells but not control cells, demonstrating that nitrogen mustards can cross-link the AGT protein to DNA in the presence of other nuclear proteins. Because AGT is overexpressed in many tumor types, further investigations of the potential role of AGT-DNA cross-linking in the antitumor and mutagenic activity of antitumor nitrogen mustards are warranted.


Biochemistry | 2008

Repair of O6-G-alkyl-O6-G interstrand cross-links by human O6-alkylguanine-DNA alkyltransferase

Qingming Fang; Anne M. Noronha; Sebastian P. Murphy; Christopher J. Wilds; Julie L. Tubbs; John A. Tainer; Goutam Chowdhury; F. Peter Guengerich; Anthony E. Pegg

O (6)-Alkylguanine-DNA alkyltransferase (AGT) plays an important role by protecting cells from alkylating agents. This reduces the frequency of carcinogenesis and mutagenesis initiated by such agents, but AGT also provides a major resistance mechanism to some chemotherapeutic drugs. To improve our understanding of the AGT-mediated repair reaction and our understanding of the spectrum of repairable damage, we have studied the ability of AGT to repair interstrand cross-link DNA damage where the two DNA strands are joined via the guanine- O (6) in each strand. An oligodeoxyribonucleotide containing a heptane cross-link was repaired with initial formation of an AGT-oligo complex and further reaction of a second AGT molecule yielding a hAGT dimer and free oligo. However, an oligodeoxyribonucleotide with a butane cross-link was a very poor substrate for AGT-mediated repair, and only the first reaction that forms an AGT-oligo complex could be detected. Models of the reaction of these substrates in the AGT active site show that the DNA duplex is forced apart locally to repair the first guanine. This reaction is greatly hindered with the butane cross-link, which is mostly buried in the active site pocket and limited in conformational flexibility. This limitation also prevents the adoption of a conformation for the second reaction to repair the AGT-oligo complex. These results are consistent with the postulated mechanism of AGT repair that involves DNA binding and flipping of the substrate nucleotide and indicate that hAGT can repair some types of interstrand cross-link damage.


Biochemistry | 2008

Structural Basis for Putrescine Activation of Human S-Adenosylmethionine Decarboxylase.

Shridhar Bale; M.M. López; George I. Makhatadze; Qingming Fang; Anthony E. Pegg; Steven E. Ealick

Putrescine (1,4-diaminobutane) activates the autoprocessing and decarboxylation reactions of human S-adenosylmethionine decarboxylase (AdoMetDC), a critical enzyme in the polyamine biosynthetic pathway. In human AdoMetDC, putrescine binds in a buried pocket containing acidic residues Asp174, Glu178, and Glu256. The pocket is away from the active site but near the dimer interface; however, a series of hydrophilic residues connect the putrescine binding site and the active site. Mutation of these acidic residues modulates the effects of putrescine. D174N, E178Q, and E256Q mutants were expressed and dialyzed to remove putrescine and studied biochemically using X-ray crystallography, UV-CD spectroscopy, analytical ultracentrifugation, and ITC binding studies. The results show that the binding of putrescine to the wild type dimeric protein is cooperative. The D174N mutant does not bind putrescine, and the E178Q and E256Q mutants bind putrescine weakly with no cooperativity. The crystal structure of the mutants with and without putrescine and their complexes with S-adenosylmethionine methyl ester were obtained. Binding of putrescine results in a reorganization of four aromatic residues (Phe285, Phe315, Tyr318, and Phe320) and a conformational change in the loop 312−320. The loop shields putrescine from the external solvent, enhancing its electrostatic and hydrogen bonding effects. The E256Q mutant with putrescine added shows an alternate conformation of His243, Glu11, Lys80, and Ser229, the residues that link the active site and the putrescine binding site, suggesting that putrescine activates the enzyme through electrostatic effects and acts as a switch to correctly orient key catalytic residues.


Cancer Research | 2006

DNA Sequence Context Affects Repair of the Tobacco-Specific Adduct O6-[4-Oxo-4-(3-pyridyl)butyl]guanine by Human O6-Alkylguanine-DNA Alkyltransferases

Renée S. Mijal; Sreenivas Kanugula; Choua C. Vu; Qingming Fang; Anthony E. Pegg; Lisa A. Peterson

The repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) protects cells from the mutagenic and carcinogenic effects of alkylating agents by removing O(6)-alkylguanine adducts from DNA. Recently, we established that AGT protects against the mutagenic effects of pyridyloxobutylation resulting from the metabolic activation of the tobacco-specific nitrosamines (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N-nitrosonornicotine by repairing O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine (O(6)-pobG). There have been several epidemiologic studies examining the association between the I143V/K178R AGT genotype and lung cancer risk. Two studies have found positive associations, suggesting that AGT proteins differ in their repair of DNA damage caused by TSNA. However, it is not known how this genotype alters the biochemical activity of AGT. We proposed that AGT proteins may differ in their ability to remove large O(6)-alkylguanine adducts, such as O(6)-pobG, from DNA. Therefore, we examined the repair of O(6)-pobG by wild-type (WT) human, I143V/K178R, and L84F AGT proteins when contained in multiple sequence contexts, including the twelfth codon of H-ras, a mutational hotspot within this oncogene. The AGT-mediated repair of O(6)-pobG was more profoundly influenced by sequence context than that of O(6)-methylguanine. These differences are not the result of secondary structure (hairpin) formation in DNA. In addition, the I143V/K178R variant seems less sensitive to the effects of sequence context than the WT or L84F proteins. These studies indicate that the sequence dependence of O(6)-pobG repair by human AGT (hAGT) varies with subtle changes in protein structure. These data establish a novel functional difference between the I143V/K178R protein and other hAGTs in the repair of a toxicologically relevant substrate, O(6)-pobG.


Journal of Biological Chemistry | 2010

Repair of O4-alkylthymine by O6-alkylguanine-DNA alkyltransferases

Qingming Fang; Sreenivas Kanugula; Julie L. Tubbs; John A. Tainer; Anthony E. Pegg

O6-Alkylguanine-DNA alkyltransferase (AGT) plays a major role in repair of the cytotoxic and mutagenic lesion O6-methylguanine (m6G) in DNA. Unlike the Escherichia coli alkyltransferase Ogt that also repairs O4-methylthymine (m4T) efficiently, the human AGT (hAGT) acts poorly on m4T. Here we made several hAGT mutants in which residues near the cysteine acceptor site were replaced by corresponding residues from Ogt to investigate the basis for the inefficiency of hAGT in repair of m4T. Construct hAGT-03 (where hAGT sequence -V149CSSGAVGN157- was replaced with the corresponding Ogt -I143GRNGTMTG151-) exhibited enhanced m4T repair activity in vitro compared with hAGT. Three AGT proteins (hAGT, hAGT-03, and Ogt) exhibited similar protection from killing by N-methyl-N′-nitro-N-nitrosoguanidine and caused a reduction in m6G-induced G:C to A:T mutations in both nucleotide excision repair (NER)-proficient and -deficient Escherichia coli strains that lack endogenous AGTs. hAGT-03 resembled Ogt in totally reducing the m4T-induced T:A to C:G mutations in NER-proficient and -deficient strains. Surprisingly, wild type hAGT expression caused a significant but incomplete decrease in NER-deficient strains but a slight increase in T:A to C:G mutation frequency in NER-proficient strains. The T:A to C:G mutations due to O4-alkylthymine formed by ethylating and propylating agents were also efficiently reduced by either hAGT-03 or Ogt, whereas hAGT had little effect irrespective of NER status. These results show that specific alterations in the hAGT active site facilitate efficient recognition and repair of O4-alkylthymines and reveal damage-dependent interactions of base and nucleotide excision repair.


Journal of Medicinal Chemistry | 2008

Substitution of aminomethyl at the meta-position enhances the inactivation of O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine.

Gary T. Pauly; Natalia A. Loktionova; Qingming Fang; Sai Lakshmana Vankayala; Wayne C. Guida; Anthony E. Pegg

O(6)-Benzylguanine is an irreversible inactivator of O(6)-alkylguanine-DNA alkyltransferase currently in clinical trials to overcome alkyltransferase-mediated resistance to certain cancer chemotherapeutic alkylating agents. In order to produce more soluble alkyltransferase inhibitors, we have synthesized three aminomethyl-substituted O(6)-benzylguanines and the three methyl analogs and found that the substitution of aminomethyl at the meta-position greatly enhances inactivation of alkyltransferase, whereas para-substitution has little effect and ortho-substitution virtually eliminates activity. Molecular modeling of their interactions with alkyltransferase provided a molecular explanation for these results. The square of the correlation coefficient (R(2)) obtained between E-model scores (obtained from GLIDE XP/QPLD docking calculations) vs log(ED(50)) values via a linear regression analysis was 0.96. The models indicate that the ortho-substitution causes a steric clash interfering with binding, whereas the meta-aminomethyl substitution allows an interaction of the amino group to generate an additional hydrogen bond with the protein.


Journal of Biological Chemistry | 2009

Cytosine Methylation Effects on the Repair of O6-Methylguanines within CG Dinucleotides

Rebecca Guza; Linan Ma; Qingming Fang; Anthony E. Pegg; Natalia Tretyakova

O6-Alkyldeoxyguanine adducts induced by tobacco-specific nitrosamines are repaired by O6-alkylguanine DNA alkyltransferase (AGT), which transfers the O6-alkyl group from the damaged base to a cysteine residue within the protein. In the present study, a mass spectrometry-based approach was used to analyze the effects of cytosine methylation on the kinetics of AGT repair of O6-methyldeoxyguanosine (O6-Me-dG) adducts placed within frequently mutated 5′-CG-3′ dinucleotides of the p53 tumor suppressor gene. O6-Me-dG-containing DNA duplexes were incubated with human recombinant AGT protein, followed by rapid quenching, acid hydrolysis, and isotope dilution high pressure liquid chromatography-electrospray ionization tandem mass spectrometry analysis of unrepaired O6-methylguanine. Second-order rate constants were calculated in the absence or presence of the C-5 methyl group at neighboring cytosine residues. We found that the kinetics of AGT-mediated repair of O6-Me-dG were affected by neighboring 5-methylcytosine (MeC) in a sequence-dependent manner. AGT repair of O6-Me-dG adducts placed within 5′-CG-3′ dinucleotides of p53 codons 245 and 248 was hindered when MeC was present in both DNA strands. In contrast, cytosine methylation within p53 codon 158 slightly increased the rate of O6-Me-dG repair by AGT. The effects of MeC located immediately 5′ and in the base paired position to O6-Me-dG were not additive as revealed by experiments with hypomethylated sequences. Furthermore, differences in dealkylation rates did not correlate with AGT protein affinity for cytosine-methylated and unmethylated DNA duplexes or with the rates of AGT-mediated nucleotide flipping, suggesting that MeC influences other kinetic steps involved in repair, e.g. the rate of alkyl transfer from DNA to AGT.


DNA Repair | 2007

Human variants of O6-alkylguanine-DNA alkyltransferase.

Anthony E. Pegg; Qingming Fang; Natalia A. Loktionova


Chemical Research in Toxicology | 2004

The repair of the tobacco specific nitrosamine derived adduct O6-[4-Oxo-4-(3-pyridyl)butyl]guanine by O6-alkylguanine-DNA alkyltransferase variants.

Renée S. Mijal; Nicole M. Thomson; Nancy L. Fleischer; Gary T. Pauly; Robert C. Moschel; Sreenivas Kanugula; Qingming Fang; and Anthony E. Pegg; Lisa A. Peterson


Chemical Research in Toxicology | 2006

CROSS-LINKING OF THE HUMAN DNA REPAIR PROTEIN O6-ALKYLGUANINE DNA ALKYLTRANSFERASE TO DNA IN THE PRESENCE OF 1,2,3,4-DIEPOXYBUTANE

Rachel Loeber; Mathur Rajesh; Qingming Fang; and Anthony E. Pegg; Natalia Tretyakova

Collaboration


Dive into the Qingming Fang's collaboration.

Top Co-Authors

Avatar

Anthony E. Pegg

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalia A. Loktionova

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Rebecca Guza

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Gary T. Pauly

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Robert C. Moschel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sreenivas Kanugula

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

and Anthony E. Pegg

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge