Qingqing Wang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qingqing Wang.
Scientific Reports | 2016
Yele Sun; Zifa Wang; Oliver Wild; Weiqi Xu; Chen Chen; Pingqing Fu; Wei Du; Libo Zhou; Qi Zhang; Tingting Han; Qingqing Wang; Xiaole Pan; Haitao Zheng; Jie Li; Xiaofeng Guo; Jianguo Liu; Douglas R. Worsnop
China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61–67% and 51–57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2–3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution.
Environmental Science & Technology | 2015
Yele Sun; Wei Du; Qingqing Wang; Qi Zhang; Chen Chen; Yong Chen; Zhenyi Chen; Pingqing Fu; Zifa Wang; Zhiqiu Gao; Douglas R. Worsnop
Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.
Journal of Geophysical Research | 2015
Qingqing Wang; Yele Sun; Qi Jiang; Wei Du; Chengzhu Sun; Pingqing Fu; Zifa Wang
Despite extensive efforts into characterization of the sources and formation mechanisms of severe haze pollution in the megacity of Beijing, the response of aerosol composition and optical properties to coal combustion emissions in the heating season remain poorly understood. Here we conducted a 3 month real-time measurement of submicron aerosol (PM1) composition by an Aerosol Chemical Speciation Monitor and particle light extinction by a Cavity Attenuated Phase Shift extinction monitor in Beijing, China, from 1 October to 31 December 2012. The average (±σ) PM1 concentration was 82.4 (±73.1) µg/m3 during the heating period (HP, 15 November to 31 December), which was nearly 50% higher than that before HP (1 October to 14 November). While nitrate and secondary organic aerosol (SOA) showed relatively small changes, organics, sulfate, and chloride were observed to have significant increases during HP, indicating the dominant impacts of coal combustion sources on these three species. The relative humidity-dependent composition further illustrated an important role of aqueous-phase processing for the sulfate enhancement during HP. We also observed great increases of hydrocarbon-like OA (HOA) and coal combustion OA (CCOA) during HP, which was attributed to higher emissions at lower temperatures and coal combustion emissions, respectively. The relationship between light extinction and chemical composition was investigated using a multiple linear regression model. Our results showed that the largest contributors to particle extinction were ammonium nitrate (32%) and ammonium sulfate (28%) before and during HP, respectively. In addition, the contributions of SOA and primary OA to particle light extinction were quantified. The results showed that the OA extinction was mainly caused by SOA before HP and by SOA and CCOA during HP, yet with small contributions from HOA and cooking aerosol for the entire study period. Our results elucidate substantial changes of aerosol composition, formation mechanisms, and optical properties due to coal combustion emissions and meteorological changes in the heating season.
Journal of Geophysical Research | 2015
Tingting Han; Weiqi Xu; Chen Chen; Xingang Liu; Qingqing Wang; Jie Li; Xiujuan Zhao; Wei Du; Zifa Wang; Yele Sun
We have investigated the chemical and optical properties of aerosol particles during the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China, using the highly time-resolved measurements by a high-resolution aerosol mass spectrometer and a cavity attenuated phase shift extinction monitor. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 186.5 (±184.5) M m−1 and 23.3 (±21.9) M m−1 during APEC, which were decreased by 63% and 56%, respectively, compared to those before APEC primarily due to strict emission controls. The aerosol composition and size distributions showed substantial changes during APEC; as a response, the mass scattering efficiency (MSE) of PM1 was decreased from 4.7 m2 g−1 to 3.5 m2 g−1. Comparatively, the average single-scattering albedo (SSA) remained relatively unchanged, illustrating the synchronous reductions of bext and bap during APEC. MSE and SSA were found to increase as function of the oxidation degree of organic aerosol (OA), indicating a change of aerosol optical properties during the aging processes. The empirical relationships between chemical composition and particle extinction were established using a multiple linear regression model. Our results showed the largest contribution of ammonium nitrate to particle extinction, accounting for 35.1% and 29.3% before and during APEC, respectively. This result highlights the important role of ammonium nitrate in the formation of severe haze pollution during this study period. We also observed very different optical properties of primary and secondary aerosol. Owing to emission controls in Beijing and surrounding regions and also partly the influences of meteorological changes, the average bext of secondary aerosol during APEC was decreased by 71% from 372.3 M m−1 to 108.5 M m−1, whereas that of primary aerosol mainly from cooking, traffic, and biomass burning emissions showed a smaller reduction from 136.7 M m−1 to 71.3 M m−1. As a result, the contribution of primary aerosol to particle extinction increased from 26.8% to 39.6%, elucidating an enhanced role of local primary sources in visibility deterioration during APEC. Further analysis of chemically resolved particle extinction showed that the extinction contributions of aerosol species varied greatly between different air masses but generally with ammonium nitrate, ammonium sulfate, and secondary OA being the three major contributors.
Science of The Total Environment | 2016
Yingjie Zhang; Yele Sun; Wei Du; Qingqing Wang; Chen Chen; Tingting Han; Jian Lin; Jian Zhao; Weiqi Xu; Jian Gao; Jie Li; Pingqing Fu; Zifa Wang; Yongxiang Han
Understanding the response of aerosol chemistry to different emission scenarios is of great importance for air pollution mitigating strategies in megacities. Here we investigate the variations in air pollutants under three different emission scenarios, i.e., heating season, spring festival holiday and non-heating season using aerosol composition and gaseous measurements from 2 February to 1 April 2015 along with source apportionment and FLEXPART analysis in Beijing. Our results showed substantially different aerosol composition among three emission scenarios that is primarily caused by different emission sources. All aerosol and gas species showed ubiquitously higher concentrations in heating season than non-heating season with the largest enhancement for fossil OA (FOA) and chloride. On average, the particulate matter (PM) level in winter heating season can be enhanced by 70% due to coal combustion emissions. In contrast, cooking aerosols and traffic related species showed significant reductions as a response of reduced anthropogenic activities during the spring festival holiday, sulfate and secondary organic aerosol (SOA) however even increased due to enhanced aqueous-phase production. Such compensating effects resulted in small changes in PM levels for haze episodes during the holiday period despite reduced anthropogenic emissions. Our results have significant implications that local emission controls during winter severe pollution episodes can reduce primary aerosols substantially, but the mitigating effects can be significantly suppressed by enhanced secondary formation under stagnant meteorological conditions.
Environmental Science & Technology | 2017
Weiqi Xu; Tingting Han; Wei Du; Qingqing Wang; Chen Chen; Jian Zhao; Yingjie Zhang; Jie Li; Pingqing Fu; Zifa Wang; Douglas R. Worsnop; Yele Sun
Secondary organic aerosol (SOA) constitutes a large fraction of OA, yet remains a source of significant uncertainties in climate models due to incomplete understanding of its formation mechanisms and evolutionary processes. Here we evaluated the effects of photochemical and aqueous-phase processing on SOA composition and oxidation degrees in three seasons in Beijing, China, using high-resolution aerosol mass spectrometer measurements along with positive matrix factorization. Our results show that aqueous-phase processing has a dominant impact on the formation of more oxidized SOA (MO-OOA), and the contribution of MO-OOA to OA increases substantially as a function of relative humidity or liquid water content. In contrast, photochemical processing plays a major role in the formation of less oxidized SOA (LO-OOA), as indicated by the strong correlations between LO-OOA and odd oxygen (Ox = O3 + NO2) during periods of photochemical production (R2 = 0.59-0.80). Higher oxygen-to-carbon ratios of SOA during periods with higher RH were also found indicating a major role of aqueous-phase processing in changing the oxidation degree of SOA in Beijing. Episodes analyses further highlight that LO-OOA plays a more important role during the early stage of the formation of autumn/winter haze episodes while MO-OOA is more significant during the later evolution period.
Journal of Geophysical Research | 2017
Tingting Han; Weiqi Xu; Jie Li; Andrew Freedman; Jian Zhao; Qingqing Wang; Chen Chen; Yingjie Zhang; Zifa Wang; Pingqing Fu; Xingang Liu; Yele Sun
Aerosol optical properties were measured in Beijing in summer and winter using a state-of-the-art cavity attenuated phase shift single scattering albedo monitor (CAPS PMssa) along with aerosol composition measurements by aerosol mass spectrometers and aethalometers. The SSA directly measured by the CAPS PMssa showed overall agreements with those derived from colocated measurements. However, substantial differences were observed during periods with low SSA values in both summer and winter, suggesting that interpretation of low SSA values needs to be cautious. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 336 (±343) Mm−1 and 44 (±41) Mm−1, respectively, during wintertime, which were approximately twice those observed in summer, while the average SSA was relatively similar, 0.86 (±0.06) and 0.85 (±0.04) in summer and winter, respectively. Further analysis showed that the variations in SSA can be approximately parameterized as a function of mass fraction of secondary particulate matter (fSPM), which is SSA = 0.74 + 0.19 × fSPM (fSPM > 0.3, r2 = 0.85). The contributions of aerosol species to extinction coefficients during the two seasons were also estimated. Our results showed that the light extinction was dominantly contributed by ammonium sulfate (30%) and secondary organic aerosol (22%) in summer, while organic aerosol was the largest contributor (51%) in winter. Consistently, SPM played the major role in visibility degradation in both seasons by contributing 70% of the total extinction.
Atmospheric Chemistry and Physics | 2018
Yingjie Zhang; Wei Du; Yuying Wang; Qingqing Wang; Haofei Wang; Haitao Zheng; Fang Zhang; Hongrong Shi; Yuxuan Bian; Yongxiang Han; Pingqing Fu; F. Canonaco; André S. H. Prévôt; Tong Zhu; Pucai Wang; Zhanqing Li; Yele Sun
The North China Plain (NCP) has experienced frequent severe haze pollution events in recent years. While extensive measurements have been made in megacities, aerosol sources, processes, and particle growth at urban downwind sites remain less understood. Here, an aerosol chemical speciation monitor and a scanning mobility particle sizer, along with a suite of collocated instruments, were deployed at the downwind site of Xingtai, a highly polluted city in the NCP, for real-time measurements of submicron aerosol (PM1) species and particle number size distributions during May and June 2016. The average mass concentration of PM1 was 30.5 (±19.4) μg m−3, which is significantly lower than that during wintertime. Organic aerosols (OAs) constituted the major fraction of PM1 (38 %), followed by sulfate (25 %) and nitrate (14 %). Positive matrix factorization with the multilinear engine version 2 showed that oxygenated OA (OOA) was the dominant species in OA throughout the study, on average accounting for 78 % of OA, while traffic and cooking emissions both accounted for 11 % of OA. Our results highlight that aerosol particles at the urban downwind site were highly aged and mainly from secondary formation. However, the diurnal cycle also illustrated the substantial influence of urban emissions on downwind sites, which are characterized by similar pronounced early morning peaks for most aerosol species. New particle formation and growth events were also frequently observed (58 % of the time) on both clean and polluted days. Particle growth rates varied from 1.2 to 4.9 nm h−1 and our results showed that sulfate and OOA played important roles in particle growth during clean periods, while OOA was more important than sulfate during polluted events. Further analyses showed that particle growth rates have no clear dependence on air mass trajectories. Published by Copernicus Publications on behalf of the European Geosciences Union. 14638 Y. Zhang et al.: Aerosol chemistry and particle growth events
Atmospheric Chemistry and Physics | 2016
Yele Sun; Wei Du; Pingqing Fu; Qingqing Wang; Jie Li; Xinlei Ge; Qi Zhang; Chunmao Zhu; Lujie Ren; Weiqi Xu; Jian Zhao; Tingting Han; Douglas R. Worsnop; Zifa Wang
Atmospheric Chemistry and Physics | 2015
Qingqing Wang; Rujin Huang; J. J. Cao; Xuexi Tie; Haiyan Ni; Yaqing Zhou; Yongming Han; Tafeng Hu; Chongshu Zhu; Tian Feng; Nan Li; Jiawei Li