Qiuyang Li
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qiuyang Li.
ACS Nano | 2015
Kaifeng Wu; Qiuyang Li; Yanyan Jia; James R. McBride; Zhaoxiong Xie; Tianquan Lian
Colloidal cadmium chalcogenide nanosheets with atomically precise thickness of a few atomic layers and size of 10-100 nm are two-dimensional (2D) quantum well materials with strong and precise quantum confinement in the thickness direction. Despite their many advantageous properties, excitons in these and other 2D metal chalcogenide materials are short-lived due to large radiative and nonradiative recombination rates, hindering their applications as light harvesting and charge separation/transport materials for solar energy conversion. We showed that these problems could be overcome in type-II CdSe/CdTe core/crown heteronanosheets (with CdTe crown laterally extending on the CdSe nanosheet core). Photoluminesence excitation measurement revealed that nearly all excitons generated in the CdSe and CdTe domains localized to the CdSe/CdTe interface to form long-lived charge transfer excitons (with electrons in the CdSe domain and hole in the CdTe domain). By ultrafast transient absorption spectroscopy, we showed that the efficient exciton localization efficiency could be attributed to ultrafast exciton localization (0.64 ± 0.07 ps), which was facilitated by large in-plane exciton mobility in these 2D materials and competed effectively with exiton trapping at the CdSe or CdTe domains. The spatial separation of electrons and holes across the CdSe/CdTe heterojunction effectively suppressed radiative and nonradiative recombination processes, leading to a long-lived charge transfer exciton state with a half-life of ∼ 41.7 ± 2.5 ns, ∼ 30 times longer than core-only CdSe nanosheets.
ACS Nano | 2016
Qiuyang Li; Kaifeng Wu; Jinquan Chen; Zheyuan Chen; James R. McBride; Tianquan Lian
CdSe/CdS core/crown nanoplatelet type I heterostructures are a class of two-dimensional materials with atomically precise thickness and many potential optoelectronic applications. It remains unclear how the precise thickness and lack of energy disorder affect the properties of exciton transport in these materials. By steady-state photoluminescence excitation spectroscopy and ultrafast transient absorption spectroscopy, we show that in five CdSe/CdS core/crown structures with the same core and increasing crown size (with thickness of ∼1.8 nm, width of ∼11 nm, and length from 20 to 40 nm), the crown-to-core exciton localization efficiency is independent of crown size and increases with photon energy above the band edge (from 70% at 400 nm to ∼100% at 370 nm), while the localization time increases with the crown size. These observations can be understood by a model that accounts for the competition of in-plane exciton diffusion and selective hole trapping at the core/crown interface. Our findings suggest that the exciton localization efficiency can be further improved by reducing interfacial defects.
ACS Nano | 2017
Qiuyang Li; Zihao Xu; James R. McBride; Tianquan Lian
Colloidal cadmium chalcogenide core/crown type-II nanoplatelet heterostructures, such as CdSe/CdTe, are promising materials for lasing and light-emitting applications. Their rational design and improvement requires the understanding of the nature of single- and multiexciton states. Using pump fluence and wavelength-dependent ultrafast transient absorption spectroscopy, we have identified three spatially and energetically distinct excitons (in the order of increasing energy): interface-localized charge transfer exciton (XCT, with electron in the CdSe core bound to the hole in the CdTe crown), and CdTe crown-localized XCdTe and CdSe core-localized XCdSe excitons. These exciton levels can be filled sequentially, with each accommodating two excitons (due to electron spin degeneracy) to generate one to six exciton states (with lifetimes of ≫1000, 209, 43.5, 11.8, 5.8, and 4.5 ps, respectively). The spatial separation of these excitons prolongs the lifetime of multiexciton states. Optical gain was observed in tri- (XXCTXCdTe) and four (XXCTXXCdTe) exciton states. Because of the large absorption cross section of nanoplatelets, an optical gain threshold as low as ∼43 μJ/cm2 can be achieved at 550 nm excitation for a colloidal solution sample. This low gain threshold and the long triexciton (gain) lifetime suggest potential applications of these 2D type-II heterostructures as low threshold lasing materials.
Nano Research | 2018
Qiuyang Li; Tianquan Lian
Solar-to-H2 conversion is attracting much research attention as a potential approach to meet global renewable energy demands. Although significant advances have been made using metal-tipped colloidal cadmium chalcogenide zero-dimensional (0D) quantum dots and one-dimensional (1D) nanorod heterostructures in solar-to-H2 conversion, their efficiency may be further enhanced using an emerging class of colloidal cadmium chalcogenide nanocrystals, namely two-dimensional (2D) nanoplatelets (NPLs), because of their unique properties. In this review, we summarize the recent advances on exciton dissociation dynamics and light-driven H2 generation performance of colloidal nanoplatelet heterostructures. Following an introduction on the electronic structure of 2D NPLs, we discuss the dynamics of exciton dissociation by electron transfer to molecular acceptors. The exciton quenching dynamics of CdS NPL-Pt and CdSe NPL-Pt heterostructures are compared to highlight the effect of material properties on the relative contributions of the energy-transfer and electron-transfer pathways. Representative solar-to-H2 conversion performances of 2D NPL-metal heterostructures are discussed and compared with those of 1D nanorod-metal heterostructures. Finally, we discuss the challenges in further improving the solar-to-fuel conversion efficiencies of these systems.
Journal of Physical Chemistry Letters | 2017
Burak Guzelturk; Yusuf Kelestemur; Murat Olutas; Qiuyang Li; Tianquan Lian; Hilmi Volkan Demir
Colloidal nanocrystals having controlled size, tailored shape, and tuned composition have been explored for optical gain and lasing. Among these, nanocrystals having Type-II electronic structure have been introduced toward low-threshold gain. However, to date, their performance has remained severely limited due to diminishing oscillator strength and modest absorption cross-section. Overcoming these problems, here we realize highly efficient optical gain in Type-II nanocrystals by using alloyed colloidal quantum wells. With composition-tuned core/alloyed-crown CdSe/CdSexTe1-x quantum wells, we achieved amplified spontaneous emission thresholds as low as 26 μJ/cm2, long optical gain lifetimes (τgain ≈ 400 ps), and high modal gain coefficients (gmodal ≈ 930 cm-1). We uncover that the optical gain in these Type-II quantum wells arises from the excitations localized to the alloyed-crown region that are electronically coupled to the charge-transfer state. These alloyed heteronanostructures exhibiting remarkable optical gain performance are expected to be highly appealing for future display and lighting technologies.
Journal of the American Chemical Society | 2018
Qiuyang Li; Fengjiao Zhao; Chen Qu; Qiongyi Shang; Zihao Xu; Li Yu; James R. McBride; Tianquan Lian
Light-driven H2 generation using semiconductor nanocrystal heterostructures has attracted intense recent interest because of the ability to rationally improve their performance by tailoring their size, composition, and morphology. In zero- and one-dimensional nanomaterials, the lifetime of the photoinduced charge-separated state is still too short for H2 evolution reaction, limiting the solar-to-H2 conversion efficiency. Here we report that using two-dimensional (2D) CdS nanoplatelet (NPL)-Pt heterostructures, H2 generation internal quantum efficiency (IQE) can exceed 40% at pH 8.8-13 and approach unity at pH 14.7. The near unity IQE at pH 14.7 is similar to those reported for 1D nanorods and can be attributed to the irreversible hole removal by OH-. At pH < 13, the IQE of 2D NPL-Pt is significantly higher than those in 1D nanorods. Detailed time-resolved spectroscopic studies and modeling of the elementary charge separation and recombination processes show that, compared to 1D nanorods, 2D morphology extends charge-separated state lifetime and may play a dominant role in enhancing the H2 generation efficiency. This work provides a new approach for designing nanostructures for efficient light-driven H2 generation.
Chemical Science | 2015
Kaifeng Wu; Qiuyang Li; Yongling Du; Zheyuan Chen; Tianquan Lian
ACS energy letters | 2017
Qiuyang Li; Boyang Zhou; James R. McBride; Tianquan Lian
Nano Letters | 2017
Qiuyang Li; Tianquan Lian
Journal of Physical Chemistry C | 2018
Fengjiao Zhao; Qiuyang Li; Ke-Li Han; Tianquan Lian