Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiuyuan Huang is active.

Publication


Featured researches published by Qiuyuan Huang.


PLOS ONE | 2013

A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing

Weiguo Hou; Shang Wang; Hailiang Dong; Hongchen Jiang; Brandon R. Briggs; Joseph P. Peacock; Qiuyuan Huang; Liuqin Huang; Geng Wu; Xiao-Yang Zhi; Wen-Jun Li; Jeremy A. Dodsworth; Brian P. Hedlund; Chuanlun Zhang; Hilairy E. Hartnett; Paul Dijkstra; Bruce A. Hungate

The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21–123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5–2.6), high temperature (85.1–89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6–4.8) and cooler temperature (55.1–64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2–9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii”, and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world.


Applied and Environmental Microbiology | 2010

RNA-Based Investigation of Ammonia-Oxidizing Archaea in Hot Springs of Yunnan Province, China

Hongchen Jiang; Qiuyuan Huang; Hailiang Dong; Peng Wang; Fengping Wang; Wen-Jun Li; Chuanlun Zhang

ABSTRACT Using RNA-based techniques and hot spring samples collected from Yunnan Province, China, we show that the amoA gene of aerobic ammonia-oxidizing archaea can be transcribed at temperatures higher than 74°C and up to 94°C, suggesting that archaeal nitrification can potentially occur at near boiling temperatures.


Environmental Microbiology | 2014

Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China.

Brandon R. Briggs; Eoin L. Brodie; Lauren M. Tom; Hailiang Dong; Hongchen Jiang; Qiuyuan Huang; Shang Wang; Weiguo Hou; Geng Wu; Liuquin Huang; Brian P. Hedlund; Chuanlun Zhang; Paul Dijkstra; Bruce A. Hungate

Studies focusing on seasonal dynamics of microbial communities in terrestrial and marine environments are common; however, little is known about seasonal dynamics in high-temperature environments. Thus, our objective was to document the seasonal dynamics of both the physicochemical conditions and the microbial communities inhabiting hot springs in Tengchong County, Yunnan Province, China. The PhyloChip microarray detected 4882 operational taxonomic units (OTUs) within 79 bacterial phylum-level groups and 113 OTUs within 20 archaeal phylum-level groups, which are additional 54 bacterial phyla and 11 archaeal phyla to those that were previously described using pyrosequencing. Monsoon samples (June 2011) showed increased concentrations of potassium, total organic carbon, ammonium, calcium, sodium and total nitrogen, and decreased ferrous iron relative to the dry season (January 2011). At the same time, the highly ordered microbial communities present in January gave way to poorly ordered communities in June, characterized by higher richness of Bacteria, including microbes related to mesophiles. These seasonal changes in geochemistry and community structure are likely due to high rainfall influx during the monsoon season and indicate that seasonal dynamics occurs in high-temperature environments experiencing significant changes in seasonal recharge. Thus, geothermal environments are not isolated from the surrounding environment and seasonality affects microbial ecology.


FEMS Microbiology Ecology | 2013

Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines

Qiuyuan Huang; Hongchen Jiang; Brandon R. Briggs; Shang Wang; Weiguo Hou; Gaoyuan Li; Geng Wu; Ramonito Solis; Carlo A. Arcilla; Teofilo Abrajano; Hailiang Dong

The microbial diversity was investigated in sediments of six acidic to circumneutral hot springs (Temperature: 60-92 °C, pH 3.72-6.58) in the Philippines using an integrated approach that included geochemistry and 16S rRNA gene pyrosequencing. Both bacterial and archaeal abundances were lower in high-temperature springs than in moderate-temperature ones. Overall, the archaeal community consisted of sequence reads that exhibited a high similarity (nucleotide identity > 92%) to phyla Crenarchaeota, Euryarchaeota, and unclassified Archaea. The bacterial community was composed of sequence reads moderately related (nucleotide identity > 90%) to 17 phyla, with Aquificae and Firmicutes being dominant. These phylogenetic groups were correlated with environmental conditions such as temperature, dissolved sulfate and calcium concentrations in spring water, and sediment properties including total nitrogen, pyrite, and elemental sulfur. Based on the phylogenetic inference, sulfur metabolisms appear to be key physiological functions in these hot springs. Sulfobacillus (within phylum Firmicutes) along with members within Sulfolobales were abundant in two high-temperature springs (> 76 °C), and they were hypothesized to play an important role in regulating the sulfur cycling under high-temperature conditions. The results of this study improve our understanding of microbial diversity and community composition in acidic to circumneutral terrestrial hot springs and their relationships with geochemical conditions.


Scientific Reports | 2015

Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China

Shang Wang; Hailiang Dong; Weiguo Hou; Hongchen Jiang; Qiuyuan Huang; Brandon R. Briggs; Liuqin Huang

Temporal variation in geochemistry can cause changes in microbial community structure and diversity. Here we studied temporal changes of microbial communities in Tengchong hot springs of Yunnan Province, China in response to geochemical variations by using microbial and geochemical data collected in January, June and August of 2011. Greater temporal variations were observed in individual taxa than at the whole community structure level. Water and sediment communities exhibited different temporal variation patterns. Water communities were largely stable across three sampling times and dominated by similar microbial lineages: Hydrogenobaculum in moderate-temperature acidic springs, Sulfolobus in high-temperature acidic springs, and Hydrogenobacter in high-temperature circumneutral to alkaline springs. Sediment communities were more diverse and responsive to changing physicochemical conditions. Most of the sediment communities in January and June were similar to those in waters. However, the August sediment community was more diverse and contained more anaerobic heterotrophs than the January and June: Desulfurella and Acidicaldus in moderate-temperature acidic springs, Ignisphaera and Desulfurococcus in high-temperature acidic springs, the candidate division OP1 and Fervidobacterium in alkaline springs, and Thermus and GAL35 in neutral springs. Temporal variations in physicochemical parameters including temperature, pH, and dissolved organic carbon may have triggered the observed microbial community shifts.


Geomicrobiology Journal | 2014

Diversity and Abundance of Ammonia-Oxidizing Archaea and Bacteria in Diverse Chinese Paddy Soils

Liuqin Huang; Hailiang Dong; Shang Wang; Qiuyuan Huang; Hongchen Jiang

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) in three types of paddy soils of China before and after rice plantation were investigated by using an integrated approach including geochemistry, 454 pyrosequencing, and quantitative polymerase chain reaction (PCR). The abundances of AOA amoA gene were 1∼2 orders of magnitude higher than AOB amoA gene. The types of paddy soils had important impacts on the diversities of both AOA and AOB via clay mineralogy (smectite or illite-rich) and bioavailability of ammonium. The Nitrososphaera subcluster 5 and Nitrosopumilis cluster of AOA, and Nitrosomonas subcluster 5 and Nitrosospira subcluster 3 of AOB were well adapted to soils with high ammonium concentrations. AOA and AOB community structures were different before and after rice plantation, likely due to changes of pH and ammonium fertilization. The Nitrosospira subclusters 2 and 9 were well adapted to acidic paddy soils. However, the sensitivity of AOA and AOB community structures to these factors may be complicated by other geochemical conditions. The results of this study collectively demonstrated that multiple environmental factors, such as clay mineralogy, ammonium content and total organic carbon as well as soil pH, shaped AOA and AOB community structure and abundance.


Frontiers in Microbiology | 2013

Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs

Brian P. Hedlund; Julienne J. Paraiso; Amanda J. Williams; Qiuyuan Huang; Yuli Wei; Paul Dijkstra; Bruce A. Hungate; Hailiang Dong; Chuanlun L. Zhang

Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31–95°C; pH: 6.8–10.7). bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal). The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS−) and positively with properties of oxygenated, low temperature sites (O2, NO−3). Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤70°C).


Geomicrobiology Journal | 2012

Actinobacterial Diversity in Microbial Mats of Five Hot Springs in Central and Central-Eastern Tibet, China

Hongchen Jiang; Christina Z. Dong; Qiuyuan Huang; Genhou Wang; Bin Fang; Chuanlun Zhang; Hailiang Dong

The diversity and community composition of Actinobacteria in microbial mats of five Tibetan hot springs (temperatures 26°C to 81°C) and a sympatric soil were investigated with 16S rRNA gene phylogentic analysis. A total of 278 clones were obtained. The actinobacterial communities in the Tibetan hot springs were diverse, and most of the retrieved clones were affiliated with Actinobacteridae, Acidimicrobidae, and unclassified Actinobacteria. The Actinobacteridae sequences were distributed into seven suborders (e.g., Frankineae, Corynebacterineae, Micromonosporineae, Pseudonocardineae, Propionibacterineae, Micrococcineae, and Actinomycineae) and unclassified Actinobacteridae. The actinobacterial composition varied among different hot springs. Statistical analysis showed that the actinobacterial diversity in the investigated Tibetan hot springs was not significantly correlated with temperature, suggesting that temperature is not a key factor in shaping the actinobacterial diversity in hot springs.


Geomicrobiology Journal | 2013

Abundance and Diversity of Ammonia-Oxidizing Bacteria and Archaea in Cold Springs on the Qinghai-Tibet Plateau

Chao Peng; Hongchen Jiang; L Iuqin Huang; Weiguo Hou; J Ian Yang; Shang Wang; Qiuyuan Huang; Shicai Deng; Hailiang Dong

The cold springs underlain by gas hydrates on the Qinghai-Tibet Plateau (QTP) are similar to deep-sea cold seeps with respect to methane biogeochemistry. Previous studies have shown that ammonia oxidizing bacteria (AOB) and archaea (AOA) are actively present and play important roles in the carbon/nitrogen cycles in cold seeps. Studying AOA and AOB communities in the QTP cold springs will be of great importance to our understanding of carbon and nitrogen cycling dynamics related to the underlying gas hydrates on the QTP. Thus, the abundance and diversity of AOB and AOA in sediments of four cold springs underlain by gas hydrates on the QTP were determined by using quantitative polymerase chain reaction and amoA gene (encoding ammonia monooxygenase involved in ammonia oxidation) phylogenetic analysis. The results showed that the AOB and AOA amoA gene abundances were at 103–104 copies per gram of the sediments in the investigated cold springs. The AOB population consisted of Nitrosospira and Nitrosomonas in contrast with the mere presence of Nitrosospira in marine cold seeps. The AOB diversity was higher in cold springs than in cold seeps. The AOA population was mainly composed of Nitrososphaera, in contrast with the dominance of Nitrosopumilus in cold seeps. The terrestrial origin and high level of dissolved oxygen of the cold springs may be the main factors accounting for the observed differences in AOB and AOA populations between the QTP cold springs and marine cold seeps.


Geomicrobiology Journal | 2015

Distribution of Arsenite-Oxidizing Bacteria and its Correlation with Temperature in Hot Springs of the Tibetan-Yunnan Geothermal Zone in Western China

Geng Wu; Hongchen Jiang; Hailiang Dong; Qiuyuan Huang; Jian Yang; Laura Webb; Qiong Liu; Huaming Guo; Songhu Yuan; Ping Li; Yanxin Wang

The distribution of arsenite-oxidizing bacteria in response to temperature is of great importance to an understanding of biogeochemical cycling of arsenic in geothermal features. The abundance and diversity of arsenite-oxidizing bacteria were investigated in the geothermal features of Tengchong County of Yunnan Province, Dachaidan County of Qinghai Province, and Tibet. The abundance of aioA genes, which encode the large subunit of arsenite oxidase, was determined by quantitative polymerase chain reactions. The diversity of aioA genes was studied by PCR-cloning-based phylogenetic analyses. The results showed that the aioA gene abundance increased as temperature decreased, whereas its diversity at the OTU level (97% cutoff) increased with increasing temperature. This suggests that temperature played an important role in affecting aioA gene distribution and thus arsenic speciation. The aioA gene population (at OTU level) differed among the studied regions, indicating geographic isolation may be an important factor controlling aioA gene distribution in hot springs.

Collaboration


Dive into the Qiuyuan Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongchen Jiang

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Shang Wang

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weiguo Hou

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Geng Wu

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liuqin Huang

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Wen-Jun Li

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge