Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qizhu Tang is active.

Publication


Featured researches published by Qizhu Tang.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Regulator of G protein signaling 5 protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

Hongliang Li; Chengwei He; Jinhua Feng; Yan Zhang; Qizhu Tang; Zhou-Yan Bian; Xue Bai; Heng Zhou; Hong Jiang; Scott P. Heximer; Mu Qin; He Huang; Peter Liu; Congxin Huang

The development of cardiac hypertrophy in response to increased hemodynamic load and neurohormonal stress is initially a compensatory response that may eventually lead to ventricular dilation and heart failure. Regulator of G protein signaling 5 (Rgs5) is a negative regulator of G protein-mediated signaling by inactivating Gα(q) and Gα(i), which mediate actions of most known vasoconstrictors. Previous studies have demonstrated that Rgs5 expresses among various cell types within mature heart and showed high levels of Rgs5 mRNA in monkey and human heart tissue by Northern blot analysis. However, the critical role of Rgs5 on cardiac remodeling remains unclear. To specifically determine the role of Rgs5 in pathological cardiac remodeling, we used transgenic mice with cardiac-specific overexpression of human Rgs5 gene and Rgs5−/− mice. Our results demonstrated that the transgenic mice were resistant to cardiac hypertrophy and fibrosis through inhibition of MEK-ERK1/2 signaling, whereas the Rgs5−/− mice displayed the opposite phenotype in response to pressure overload. These studies indicate that Rgs5 protein is a crucial component of the signaling pathway involved in cardiac remodeling and heart failure.


Journal of Molecular Medicine | 2009

Lysosomal cysteine peptidase cathepsin L protects against cardiac hypertrophy through blocking AKT/GSK3β signaling

Qizhu Tang; Jun Cai; Difei Shen; Zhou-Yan Bian; Ling Yan; You-Xin Wang; Jie Lan; Guoqing Zhuang; Wenzhan Ma; Wei Wang

The lysosomal cysteine peptidase cathepsin L (CTSL) is an important lysosomal proteinase involved in a variety of cellular functions including intracellular protein turnover, epidermal homeostasis, and hair development. Deficiency of CTSL in mice results in a progressive dilated cardiomyopathy. In the present study, we tested the hypothesis that cardiac overexpression of human CTSL in the murine heart would protect against cardiac hypertrophy in vivo. The effects of constitutive human CTSL expression on cardiac hypertrophy were investigated using in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding (AB) in CTSL transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by two-dimensional and M-mode echocardiography as well as by molecular and pathological analyses of heart samples. Constitutive overexpression of human CTSL in the murine heart attenuated the hypertrophic response, markedly reduced apoptosis, and fibrosis. Cardiac function was also preserved in hearts with increased CTSL levels in response to hypertrophic stimuli. These beneficial effects were associated with attenuation of the Akt/GSK3β signaling cascade. Our in vitro studies further confirmed that CTSL expression in cardiomyocytes blunts cardiac hypertrophy through blocking of Akt/GSK3β signaling. The study indicates that CTSL improves cardiac function and inhibits cardiac hypertrophy, inflammation, and fibrosis through blocking Akt/GSK3β signaling.


PLOS ONE | 2011

Activating transcription factor 3 deficiency promotes cardiac hypertrophy, dysfunction, and fibrosis induced by pressure overload.

Heng Zhou; Difei Shen; Zhou-Yan Bian; Jing Zong; Wei Deng; Yan Zhang; Yuanyuan Guo; Hongliang Li; Qizhu Tang

Activating transcription factor 3 (ATF3), which is encoded by an adaptive-response gene induced by various stimuli, plays an important role in the cardiovascular system. However, the effect of ATF3 on cardiac hypertrophy induced by a pathological stimulus has not been determined. Here, we investigated the effects of ATF3 deficiency on cardiac hypertrophy using in vitro and in vivo models. Aortic banding (AB) was performed to induce cardiac hypertrophy in mice. Cardiac hypertrophy was estimated by echocardiographic and hemodynamic measurements and by pathological and molecular analysis. ATF3 deficiency promoted cardiac hypertrophy, dysfunction and fibrosis after 4 weeks of AB compared to the wild type (WT) mice. Furthermore, enhanced activation of the MEK-ERK1/2 and JNK pathways was found in ATF3-knockout (KO) mice compared to WT mice. In vitro studies performed in cultured neonatal mouse cardiomyocytes confirmed that ATF3 deficiency promotes cardiomyocyte hypertrophy induced by angiotensin II, which was associated with the amplification of MEK-ERK1/2 and JNK signaling. Our results suggested that ATF3 plays a crucial role in the development of cardiac hypertrophy via negative regulation of the MEK-ERK1/2 and JNK pathways.


Journal of Nutritional Biochemistry | 2010

Allicin protects against cardiac hypertrophy and fibrosis via attenuating reactive oxygen species-dependent signaling pathways.

Chen Liu; Feng Cao; Qizhu Tang; Ling Yan; Yu-Gang Dong; Li-Hua Zhu; Lang Wang; Zhou-Yan Bian; Hongliang Li

Increased oxidative stress has been associated with the pathogenesis of chronic cardiac hypertrophy and heart failure. Since allicin suppresses oxidative stress in vitro and in vivo, we hypothesized that allicin would inhibit cardiac hypertrophy through blocking oxidative stress-dependent signaling. We examined this hypothesis using primary cultured cardiac myocytes and fibroblasts and one well-established animal model of cardiac hypertrophy. Our results showed that allicin markedly inhibited hypertrophic responses induced by Ang II or pressure overload. The increased reactive oxygen species (ROS) generation and NADPH oxidase activity were significantly suppressed by allicin. Our further investigation revealed this inhibitory effect on cardiac hypertrophy was mediated by blocking the activation of ROS-dependent ERK1/2, JNK1/2 and AKT signaling pathways. Additional experiments demonstrated allicin abrogated inflammation and fibrosis by blocking the activation of nuclear factor-κB and Smad 2/3 signaling, respectively. The combination of these effects resulted in preserved cardiac function in response to cardiac stimuli. Consequently, these findings indicated that allicin protected cardiac function and prevented the development of cardiac hypertrophy through ROS-dependent mechanism involving multiple intracellular signaling.


Hypertension | 2010

Tumor Suppressor A20 Protects Against Cardiac Hypertrophy and Fibrosis by Blocking Transforming Growth Factor-β–Activated Kinase 1–Dependent Signaling

He Huang; Qizhu Tang; Ai-Bing Wang; Manyin Chen; Ling Yan; Chen Liu; Hong Jiang; Qinglin Yang; Zhou-Yan Bian; Xue Bai; Li-Hua Zhu; Lang Wang; Hongliang Li

A20 or tumor necrosis factor–induced protein 3 is a negative regulator of nuclear factor &kgr;B signaling. A20 has been shown previously to attenuate cardiac hypertrophy in vitro and postmyocardial infarction remodeling in vivo. In the present study, we tested the hypothesis that overexpression of A20 in the murine heart would protect against cardiac hypertrophy in vivo. The effects of constitutive human A20 expression on cardiac hypertrophy were investigated using in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding in A20 transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by echocardiography, as well as by pathological and molecular analyses of heart samples. Constitutive overexpression of human A20 in the murine heart attenuated the hypertrophic response and markedly reduced inflammation, apoptosis, and fibrosis. Cardiac function was also preserved in hearts with increased A20 levels in response to hypertrophic stimuli. Western blot experiments further showed A20 expression markedly blocked transforming growth factor-&bgr;–activated kinase 1–dependent c-Jun N-terminal kinase/p38 signaling cascade but with no difference in either extracellular signal-regulated kinase 1/2 or AKT activation in vivo and in vitro. In cultured neonatal rat cardiac myocytes, [3H]proline incorporation and Western blot assays revealed that A20 expression suppressed transforming growth factor-&bgr;–induced collagen synthesis and transforming growth factor-&bgr;–activated kinase 1–dependent Smad 2/3/4 activation. In conclusion, A20 improves cardiac functions and inhibits cardiac hypertrophy, inflammation, apoptosis, and fibrosis by blocking transforming growth factor-&bgr;–activated kinase 1–dependent signaling.


Inflammation | 2011

TLR4 Activation Induces Nontolerant Inflammatory Response in Endothelial Cells

Wenmeng Wang; Minjie Deng; Xueting Liu; Wen Ai; Qizhu Tang; Jinyue Hu

In professional immune cells, Toll-like receptor 4 (TLR4) induces tightly regulated inflammatory response to avoid tissue damage via the induction of “endotoxin tolerance”, which is a transient state of cell desensitization in response to lipopolysaccharide (LPS) restimulation after a prior LPS exposure. However, in endothelial cells, the regulation of TLR4-induced inflammation is not fully understood. In this study, we found that the gene transcripts for a lot of Toll-like receptors were expressed in various endothelial cells, including human umbilical vein endothelial cells (HUVEC), human aortic endothelial cell (HAEC), and mouse microvascular endothelial cells (bEND.3). Proteins of TLR4 and its coreceptor CD14 were also detected in HUVEC. LPS treatment significantly upregulated the expression of proinflammation cytokines such as IL-1β, IL-6, and IL-8 only in HUVEC, but not in HAEC and bEND.3, suggesting that vein endothelial cells are important source of proinflammatory cytokines in response to LPS. Unexpectedly, “endotoxin tolerance” was not induced in endothelial cell, but was induced in control glial cells, as LPS pretreatment downregulated the cytokine expression in control glial cells, but did not in endothelial cells, when the cells were restimulated with LPS. The upregulation of cytokine gene expression was dependent on NF-κB signaling, and NF-κB inhibitor repressed the induction of cytokines. Two important signal molecules MyD88 and TRIF, which are TLR4 downstream and NF-κB upstream, were upregulated in vein endothelial cells but were downregulated in control glial cells. These results suggested that vein endothelial cells may play important roles in the pathophysiology of systemic inflammation-associated diseases such as sepsis and septic cardiomyopathy.


Molecular and Cellular Biochemistry | 2012

Gastrodin protects against cardiac hypertrophy and fibrosis.

Chunming Shu; Changgui Chen; Da-ping Zhang; Haipeng Guo; Heng Zhou; Jing Zong; Zhou-Yan Bian; Xuan Dong; Jia Dai; Yan Zhang; Qizhu Tang

Phenolic glucoside gastrodin (Gas), which is a main component extracted from the Chinese herbs Gastrodia elata Bl, is a well-known natural calcium antagonist with antioxidant and anti-inflammatory functions. It has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. Previous studies have shown that gastrodin possesses comprehensive pharmacological functions. However, very little is known about whether gastrodin has protective role on cardiac hypertrophy. The aim of this study was to determine whether gastrodin attenuates pressure overload-induced cardiac hypertrophy in mice and to clarify the underlying molecular mechanisms. Our data demonstrated that gastrodin prevented cardiac hypertrophy induced by aortic banding (AB), as assessed by heart weight/body weight and lung weight/body weight ratios, echocardiographic parameters, and gene expression of hypertrophic markers. The inhibitory effect of gastrodin on cardiac hypertrophy is mediated by ERK1/2 signaling and GATA-4 activation. Further studies showed that gastrodin attenuated fibrosis and collagen synthesis through abrogating ERK1/2 signaling pathway. Therefore, these findings indicated that gastrodin, which is a potentially safe and inexpensive therapy for clinical use, has protective potential in targeting cardiac hypertrophy and fibrosis through suppression of ERK1/2 signaling.


Journal of Cellular and Molecular Medicine | 2009

Cellular repressor of E1A-stimulated genes attenuates cardiac hypertrophy and fibrosis.

Zhou-Yan Bian; Jun Cai; Difei Shen; Li Chen; Ling Yan; Qizhu Tang; Hongliang Li

Cellular repressor of E1A‐stimulated genes (CREG) is a secreted glycoprotein of 220 amino acids. It has been proposed that CREG acts as a ligand that enhances differentiation and/or reduces cell proliferation. CREG has been shown previously to attenuate cardiac hypertrophy in vitro. However, such a role has not been determined in vivo. In the present study, we tested the hypothesis that overexpression of CREG in the murine heart would protect against cardiac hypertrophy and fibrosis in vivo. The effects of constitutive human CREG expression on cardiac hypertrophy were investigated using both in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding and infusion of angiotensin II in CREG transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by two‐dimensional and M‐mode echocardiography as well as by molecular and pathological analyses of heart samples. Constitutive over‐expression of human CREG in the murine heart attenuated the hypertrophic response, markedly reduced inflammation. Cardiac function was also preserved in hearts with increased CREG levels in response to hypertrophic stimuli. These beneficial effects were associated with attenuation of the mitogen‐activated protein kinase (MAPK)‐extracellular signal‐regulated kinase 1 (MEK‐ERK1)/2‐dependent signalling cascade. In addition, CREG expression blocked fibrosis and collagen synthesis through blocking MEK‐ERK1/2‐dependent Smad 2/3 activation in vitro and in vivo. Therefore, the expression of CREG improves cardiac functions and inhibits cardiac hypertrophy, inflammation and fibrosis through blocking MEK‐ERK1/2‐dependent signalling.


Journal of Cardiology | 2014

Puerarin attenuates pressure overload-induced cardiac hypertrophy

Yuan Yuan; Jing Zong; Heng Zhou; Zhou-Yan Bian; Wei Deng; Jia Dai; Hua-wen Gan; Zheng Yang; Hongliang Li; Qizhu Tang

BACKGROUND Puerarin is the most abundant isoflavonoid in kudzu root. It has been used to treat angina pectoris and myocardial infarction clinically. However, little is known about the effect of puerarin on cardiac hypertrophy. METHODS Aortic banding (AB) was performed to induce cardiac hypertrophy in mice. Puerarin premixed in diets was administered to mice after one week of AB. Echocardiography and catheter-based measurements of hemodynamic parameters were performed at 7 weeks after starting puerarin treatment (8 weeks post-surgery). The extent of cardiac hypertrophy was also evaluated by pathological and molecular analyses of heart samples. Cardiomyocyte apoptosis was assessed by measuring Bax and Bcl-2 protein expression and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. In addition, the inhibitory effect of puerarin (1 μM, 5 μM, 10 μM, 20 μM, 40 μM) on mRNA expression of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in Ang II (1 μM)-stimulated H9c2 cells was investigated using quantitative real-time reverse transcription-polymerase chain reaction. RESULTS Echocardiography and catheter-based measurements of hemodynamic parameters at 7 weeks revealed the amelioration of systolic and diastolic abnormalities. Puerarin also decreased cardiac fibrosis in AB mice. Moreover, the beneficial effect of puerarin was associated with the normalization in gene expression of hypertrophic and fibrotic markers. Further studies showed that pressure overload significantly induced the activation of phosphoinositide 3-kinase (PI3K)/Akt signaling and c-Jun N-terminal kinase (JNK) signaling, which was blocked by puerarin treatment. Cardiomyocyte apoptosis and induction of Bax in response to AB were suppressed by puerarin. Furthermore, the increased mRNA expression of ANP and BNP induced by Ang II (1 μM) was restrained to a different extent by different concentrations of puerarin. CONCLUSION Puerarin may have an ability to retard the progression of cardiac hypertrophy and apoptosis which is probably mediated by the blockade of PI3K/Akt and JNK signaling pathways.


Hypertension | 2010

LIM and Cysteine-Rich Domains 1 Regulates Cardiac Hypertrophy by Targeting Calcineurin/Nuclear Factor of Activated T Cells Signaling

Zhou-Yan Bian; He Huang; Hong Jiang; Difei Shen; Ling Yan; Li-Hua Zhu; Lang Wang; Feng Cao; Chen Liu; Qizhu Tang; Hongliang Li

LIM domain proteins are important regulators in cell growth, cell fate determination, cell differentiation, and remodeling of the cell cytoskeleton. LIM and cysteine-rich domains 1 (Lmcd1) is a novel protein that contain 2 LIM domains with regular spacing in the carboxy-terminal region. However, its roles in cardiac growth remain unknown. Here, we investigated whether Lmcd1 regulates cardiac hypertrophy in vitro and in vivo and elucidated the underlying molecular mechanisms. We used primary cultured cardiac myocytes and cardiac-specific Lmcd1 transgenic mice. In wild-type mice subjected to the aortic banding, cardiac hypertrophy was evident at 8 weeks. In transgenic mice, however, cardiac hypertrophy was significantly greater than that in wild-type mice, as estimated by heart weight:body weight ratio, cardiomyocyte area, and echocardiographic measurements, as well as cardiac atrial natriuretic peptide and B-type natriuretic peptide mRNA and protein levels. Our results further showed that cardiac fibrosis observed in wild-type aortic banding mice was augmented in transgenic aortic banding mice. Importantly, calcineurin activity and nuclear factor of activated T cells activation level were increased more in transgenic mice than those in wild-type mice after 8-week aortic banding. In vitro experiments in cardiac myocytes further revealed that angiotensin II–induced calcineurin activity and nuclear factor of activated T cells activation were enhanced by overexpression but blunted by downregulation of Lmcd1. In conclusion, our results suggest that Lmcd1 plays a critical role in the development of cardiac hypertrophy via activation of calcineurin/nuclear factor of activated T cells signaling pathway.

Collaboration


Dive into the Qizhu Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge