Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhen-Guo Ma is active.

Publication


Featured researches published by Zhen-Guo Ma.


British Journal of Pharmacology | 2016

Protection against cardiac hypertrophy by geniposide involves the GLP-1 receptor / AMPKα signalling pathway.

Zhen-Guo Ma; Jia Dai; Wen-Bin Zhang; Yuan Yuan; Hai-Han Liao; Ning Zhang; Zhou-Yan Bian; Qizhu Tang

Activation of glucagon‐like peptide‐1 (GLP‐1) receptor exerts a range of cardioprotective effects. Geniposide is an agonist of GLP‐1 receptor, but its role in cardiac hypertrophy remains completely unknown. Here, we have investigated its protective effects and clarified the underlying molecular mechanisms.


Ppar Research | 2016

Pioglitazone Protected against Cardiac Hypertrophy via Inhibiting AKT/GSK3β and MAPK Signaling Pathways

Wen-Ying Wei; Zhen-Guo Ma; Si-Chi Xu; Ning Zhang; Qi-Zhu Tang

Peroxisome proliferator activated receptor γ (PPARγ) has been closely involved in the process of cardiovascular diseases. This study was to investigate whether pioglitazone (PIO), a PPARγ agonist, could protect against pressure overload-induced cardiac hypertrophy. Mice were orally given PIO (2.5 mg/kg) from 1 week after aortic banding and continuing for 7 weeks. The morphological examination and biochemical analysis were used to evaluate the effects of PIO. Neonatal rat ventricular cardiomyocytes were also used to verify the protection of PIO against hypertrophy in vitro. The results in our study demonstrated that PIO remarkably inhibited hypertrophic response induced by aortic banding in vivo. Besides, PIO also suppressed cardiac fibrosis in vivo. PIO treatment also inhibited the activation of protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) and mitogen-activated protein kinase (MAPK) in the heart. In addition, PIO alleviated angiotensin II-induced hypertrophic response in vitro. In conclusion, PIO could inhibit cardiac hypertrophy via attenuation of AKT/GSK3β and MAPK pathways.


International Journal of Biological Sciences | 2016

Asiatic Acid Protects against Cardiac Hypertrophy through Activating AMPKα Signalling Pathway

Zhen-Guo Ma; Jia Dai; Wen-Ying Wei; Wen-Bin Zhang; Si-Chi Xu; Hai-Han Liao; Zheng Yang; Qi-Zhu Tang

Background: AMPactivated protein kinase α (AMPKα) is closely involved in the process of cardiac hypertrophy. Asiatic acid (AA), a pentacyclic triterpene, was found to activate AMPKα in our preliminary experiment. However, its effects on the development of cardiac hypertrophy remain unclear. The present study was to determine whether AA could protect against cardiac hypertrophy. Methods: Mice subjected to aortic banding were orally given AA (10 or 30mg/kg) for 7 weeks. In the inhibitory experiment, Compound C was intraperitoneally injected for 3 weeks after surgery. Results: Our results showed that AA markedly inhibited hypertrophic responses induced by pressure overload or angiotensin II. AA also suppressed cardiac fibrosis in vivo and accumulation of collagen in vitro. The protective effects of AA were mediated by activation of AMPKα and inhibition of the mammalian target of rapamycin (mTOR) pathway and extracellular signal-regulated kinase (ERK) in vivo and in vitro. However, AA lost the protective effects after AMPKα inhibition or gene deficiency. Conclusions: AA protects against cardiac hypertrophy by activating AMPKα, and has the potential to be used for the treatment of heart failure.


EBioMedicine | 2017

Piperine Attenuates Pathological Cardiac Fibrosis Via PPAR-γ/AKT Pathways

Zhen-Guo Ma; Yu-Pei Yuan; Xin Zhang; Si-Chi Xu; Sha-Sha Wang; Qizhu Tang

Mitogen-activated protein kinases (MAPKs) and AMPactivated protein kinase α (AMPKα) play critical roles in the process of cardiac hypertrophy. Previous studies have demonstrated that piperine activates AMPKα and reduces the phosphorylation of extracellular signal-regulated kinase (ERK). However, the effect of piperine on cardiac hypertrophy remains completely unknown. Here, we show that piperine-treated mice had similar hypertrophic responses as mice treated with vehicle but exhibited significantly attenuated cardiac fibrosis after pressure overload or isoprenaline (ISO) injection. Piperine inhibited the transformation of cardiac fibroblasts to myofibroblasts induced by transforming growth factor-β (TGF-β) or angiotensin II (Ang II) in vitro. This anti-fibrotic effect was independent of the AMPKα and MAPK pathway. Piperine blocked activation of protein kinase B (AKT) and, downstream, glycogen synthase kinase 3β (GSK3β). The overexpression of constitutively active AKT or the knockdown of GSK3β completely abolished the piperine-mediated protection of cardiac fibroblasts. The cardioprotective effects of piperine were blocked in mice with constitutively active AKT. Pretreatment with GW9662, a specific inhibitor of peroxisome proliferator activated receptor-γ (PPAR-γ), reversed the effect elicited by piperine in vitro. In conclusion, piperine attenuated cardiac fibrosis via the activation of PPAR-γ and the resultant inhibition of AKT/GSK3β.


Clinical Science | 2017

Mechanisms contributing to cardiac remodelling

Qing-Qing Wu; Yang Xiao; Yuan Yuan; Zhen-Guo Ma; Hai-Han Liao; Chen Liu; Jin-Xiu Zhu; Zheng Yang; Wei Deng; Qizhu Tang

Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.


British Journal of Pharmacology | 2016

Geniposide Protects against Cardiac Hypertrophy via GLP‐1R/AMPKα Signalling Pathway

Zhen-Guo Ma; Jia Dai; Wen-Bin Zhang; Yuan Yuan; Hai-Han Liao; Ning Zhang; Zhou-Yan Bian; Qizhu Tang

Activation of glucagon‐like peptide‐1 (GLP‐1) receptor exerts a range of cardioprotective effects. Geniposide is an agonist of GLP‐1 receptor, but its role in cardiac hypertrophy remains completely unknown. Here, we have investigated its protective effects and clarified the underlying molecular mechanisms.


PLOS ONE | 2013

IKKi Deficiency Promotes Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis

Jia Yuan Dai; Difei Shen; Zhou-Yan Bian; Heng Zhou; Hua-wen Gan; Jing Zong; Wei Deng; Yuan Yuan; Fangfang Li; Qing-Qing Wu; Lu Gao; Rui Zhang; Zhen-Guo Ma; Hongliang Li; Qizhu Tang

The inducible IκB kinase (IKKi/IKKε) is a recently described serine-threonine IKK-related kinase. Previous studies have reported the role of IKKi in infectious diseases and cancer. However, its role in the cardiac response to pressure overload remains elusive. In this study, we investigated the effects of IKKi deficiency on the development of pathological cardiac hypertrophy using in vitro and in vivo models. First, we developed mouse models of pressure overload cardiac hypertrophy induced by pressure overload using aortic banding (AB). Four weeks after AB, cardiac function was then assessed through echocardiographic and hemodynamic measurements. Western blotting, real-time PCR and histological analyses were used to assess the pathological and molecular mechanisms. We observed that IKKi-deficient mice showed significantly enhanced cardiac hypertrophy, cardiac dysfunction, apoptosis and fibrosis compared with WT mice. Furthermore, we recently revealed that the IKKi-deficient mice spontaneously develop cardiac hypertrophy. Moreover, in vivo experiments showed that IKKi deficiency-induced cardiac hypertrophy was associated with the activation of the AKT and NF-κB signaling pathway in response to AB. In cultured cells, IKKi overexpression suppressed the activation of this pathway. In conclusion, we demonstrate that IKKi deficiency exacerbates cardiac hypertrophy by regulating the AKT and NF-κB signaling pathway.


Biochimica et Biophysica Acta | 2015

Toll-like receptor 5 deficiency attenuates interstitial cardiac fibrosis and dysfunction induced by pressure overload by inhibiting inflammation and the endothelial-mesenchymal transition.

Yuan Liu; Zhe-fu Hu; Hai-Han Liao; Wei Liu; Juan Liu; Zhen-Guo Ma; Qing-Qing Wu; Man Xu; Ning Zhang; Yao Zhang; Zhou-Yan Bian; Qizhu Tang

Vascular dysfunction, characterized by the endothelial-to-mesenchymal transition (EndMT), contributes to the development of cardiac fibrosis induced by pressure overload. Toll-like receptor (TLR)5 is a member of the TLR family that is expressed on not only immune cells but also nonimmune cells including cardiomyocytes and vascular endothelial cells. The level of TLR5 expression on endothelial cells is low under normal circumstances but is increased in response to stimuli such as pressure overload. The aim of this study was to investigate the importance of TLR5 in cardiac endothelial dysfunction during the development of cardiac fibrosis induced by pressure overload. Global TLR5-deficient mice and wild-type littermates underwent aortic banding (AB) for 8weeks to induce cardiac fibrosis, hypertrophy and dysfunction. The deficiency of TLR5 in this model exerted no basal effects but attenuated the cardiac fibrosis, hypertrophy and dysfunction induced by pressure overload. AB-induced endothelial TLR5 activation enhanced the development of cardiac fibrosis independent of cardiomyocyte hypertrophy and triggered left ventricular dysfunction. TLR5-deficient mice also exhibited ameliorated myocardial pro-inflammatory cytokine expression and macrophage infiltration and inhibited the EndMT, all of which contribute to the development of cardiac fibrosis. These findings suggest that TLR5 triggers inflammatory responses and promotes the EndMT, which may be an important mechanism underlying the promotion of cardiac fibrosis and left ventricular dysfunction during pressure overload.


Journal of Molecular and Cellular Cardiology | 2018

CTRP3 protected against doxorubicin-induced cardiac dysfunction, inflammation and cell death via activation of Sirt1.

Yu-Pei Yuan; Zhen-Guo Ma; Xin Zhang; Si-Chi Xu; Xiao-Feng Zeng; Zheng Yang; Wei Deng; Qi-Zhu Tang

BACKGROUND Inflammation and myocytes apoptosis play critical roles in the development of doxorubicin (DOX)-induced cardiotoxicity. Our previous study found that C1q/tumour necrosis factor-related protein-3 (CTRP3) could inhibit cardiac inflammation and apoptosis of myocytes but its role in DOX-induced heart injury remains largely unknown. Our study aimed to investigate whether CTRP3 protected against DOX-induced heart injury and the underlying mechanism. METHODS We overexpressed CTRP3 in the hearts using an adeno-associated virus system. The mice were subjected to a single intraperitoneal injection of DOX (15mg/kg) to induce short-term model for cardiomyopathy. The morphological examination and biochemical analysis were used to evaluate the effects of CTRP3. H9C2 cells were used to verify the protective role of CTRP3 in vitro. RESULTS Myocardial CTRP3 protein levels were reduced in DOX-treated mice. Cardiac specific-overexpression of CTRP3 preserved heart dysfunction, and attenuated cardiac inflammation and cell loss induced by DOX in vivo and in vitro. CTRP3 could activate silent information regulator 1 (Sirt1) in vivo and in vitro. Moreover, specific inhibitor of Sirt1 and the silence of Sirt1 could abolish the protective effects of CTRP3 against DOX-induced inflammation and apoptosis. CONCLUSION CTRP3 protected against DOX-induced heart injury via activation of Sirt1. CTRP3 has therapeutic potential for the treatment of DOX cardiotoxicity.


Ppar Research | 2017

Bezafibrate Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis

Si-Chi Xu; Zhen-Guo Ma; Wen-Ying Wei; Yu-Pei Yuan; Qi-Zhu Tang

Background. Peroxisome proliferator-activated receptor-α (PPAR-α) is closely associated with the development of cardiac hypertrophy. Previous studies have indicated that bezafibrate (BZA), a PPAR-α agonist, could attenuate insulin resistance and obesity. This study was designed to determine whether BZA could protect against pressure overload-induced cardiac hypertrophy. Methods. Mice were orally given BZA (100 mg/kg) for 7 weeks beginning 1 week after aortic banding (AB) surgery. Cardiac hypertrophy was assessed based on echocardiographic, histological, and molecular aspects. Moreover, neonatal rat ventricular cardiomyocytes (NRVMs) were used to investigate the effects of BZA on the cardiomyocyte hypertrophic response in vitro. Results. Our study demonstrated that BZA could alleviate cardiac hypertrophy and fibrosis in mice subjected to AB surgery. BZA treatment also reduced the phosphorylation of protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) and mitogen-activated protein kinases (MAPKs). BZA suppressed phenylephrine- (PE-) induced hypertrophy of cardiomyocyte in vitro. The protective effects of BZA were abolished by the treatment of the PPAR-α antagonist in vitro. Conclusions. BZA could attenuate pressure overload-induced cardiac hypertrophy and fibrosis.

Collaboration


Dive into the Zhen-Guo Ma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge