Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Quanshun Zhang is active.

Publication


Featured researches published by Quanshun Zhang.


PLOS Pathogens | 2009

Genomic survey of the non-cultivatable opportunistic human pathogen, enterocytozoon bieneusi

Hilary G. Morrison; Shi Lei; Xiaochuan Feng; Quanshun Zhang; Nicolas Corradi; Harriet Mayanja; James K Tumwine; Patrick J. Keeling; Louis M. Weiss; Saul Tzipori

Enterocytozoon bieneusi is the most common microsporidian associated with human disease, particularly in the immunocompromised population. In the setting of HIV infection, it is associated with diarrhea and wasting syndrome. Like all microsporidia, E. bieneusi is an obligate, intracellular parasite, but unlike others, it is in direct contact with the host cell cytoplasm. Studies of E. bieneusi have been greatly limited due to the absence of genomic data and lack of a robust cultivation system. Here, we present the first large-scale genomic dataset for E. bieneusi. Approximately 3.86 Mb of unique sequence was generated by paired end Sanger sequencing, representing about 64% of the estimated 6 Mb genome. A total of 3,804 genes were identified in E. bieneusi, of which 1,702 encode proteins with assigned functions. Of these, 653 are homologs of Encephalitozoon cuniculi proteins. Only one E. bieneusi protein with assigned function had no E. cuniculi homolog. The shared proteins were, in general, evenly distributed among the functional categories, with the exception of a dearth of genes encoding proteins associated with pathways for fatty acid and core carbon metabolism. Short intergenic regions, high gene density, and shortened protein-coding sequences were observed in the E. bieneusi genome, all traits consistent with genomic compaction. Our findings suggest that E. bieneusi is a likely model for extreme genome reduction and host dependence.


Gut microbes | 2013

A pig model of the human gastrointestinal tract

Quanshun Zhang; Giovanni Widmer; Saul Tzipori

Easy access to next generation sequencing has enabled the rapid analysis of complex microbial populations. To take full advantage of these technologies, animal models enabling the manipulation of human microbiomes and the study of the impact of such perturbations on the host are needed. To this aim we are developing experimentally tractable and clinically relevant pig models of the human adult and infant gastro-intestinal tract. The intestine of germ-free piglets was populated with human adult or infant fecal microbial populations, and the piglets were maintained on solid or milk diet, respectively. Amplicons of 16S rRNA V6 region were deep-sequenced to monitor to what extent the transplanted human microbiomes changed in the pig. Within 24 h of transfer of human fecal microbiome to pigs, bacterial microbiomes rich in Proteobacteria emerged. These populations evolved toward a more diverse composition rich in Bacteroidetes and Firmicutes. In the experiment where infant microbiome was used, the phylogenetic composition of the transplanted bacterial population converged toward that of the human inoculum. A majority of sequences belonged to a relatively small number of operational taxonomic units, whereas at the other end of the abundance spectrum, a large number of rare and transient OTUs were detected. Analysis of fecal and colonic microbiomes originating from the same animal indicate that feces closely replicate the colonic microbiome. We conclude that the pig intestine can be colonized with human fecal microbiomes to generate a realistic model of the human GI tract.


Proteomics | 2009

The Shigella dysenteriae serotype 1 proteome, profiled in the host intestinal environment, reveals major metabolic modifications and increased expression of invasive proteins

Rembert Pieper; Quanshun Zhang; Prashanth P. Parmar; Shih-Ting Huang; David J. Clark; Hamid Alami; Arthur Donohue-Rolfe; Robert D. Fleischmann; Scott N. Peterson; Saul Tzipori

Shigella dysenteriae serotype 1 (SD1) causes the most severe form of epidemic bacillary dysentery. We present the first comprehensive proteome analysis of this pathogen, profiling proteins from bacteria cultured in vitro and bacterial isolates from the large bowel of infected gnotobiotic piglets (in vivo). Overall, 1061 distinct gene products were identified. Differential display analysis revealed that SD1 cells switched to an anaerobic energy metabolism in vivo. High in vivo abundances of amino acid decarboxylases (GadB and AdiA) which enhance pH homeostasis in the cytoplasm and protein disaggregation chaperones (HdeA, HdeB and ClpB) were indicative of a coordinated bacterial survival response to acid stress. Several type III secretion system effectors were increased in abundance in vivo, including OspF, IpaC and IpaD. These proteins are implicated in invasion of colonocytes and subversion of the host immune response in S. flexneri. These observations likely reflect an adaptive response of SD1 to the hostile host environment. Seven proteins, among them the type III secretion system effectors OspC2 and IpaB, were detected as antigens in Western blots using piglet antisera. The outer membrane protein OmpA, the heat shock protein HtpG and OspC2 represent novel SD1 subunit vaccine candidates and drug targets.


BMC Microbiology | 2011

In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism

Srilatha Kuntumalla; Quanshun Zhang; John C. Braisted; Robert D. Fleischmann; Scott N. Peterson; Arthur Donohue-Rolfe; Saul Tzipori; Rembert Pieper

BackgroundShigella dysenteriae serotype 1 (SD1) causes the most severe form of epidemic bacillary dysentery. Quantitative proteome profiling of Shigella dysenteriae serotype 1 (SD1) in vitro (derived from LB cell cultures) and in vivo (derived from gnotobiotic piglets) was performed by 2D-LC-MS/MS and APEX, a label-free computationally modified spectral counting methodology.ResultsOverall, 1761 proteins were quantitated at a 5% FDR (false discovery rate), including 1480 and 1505 from in vitro and in vivo samples, respectively. Identification of 350 cytoplasmic membrane and outer membrane (OM) proteins (38% of in silico predicted SD1 membrane proteome) contributed to the most extensive survey of the Shigella membrane proteome reported so far. Differential protein abundance analysis using statistical tests revealed that SD1 cells switched to an anaerobic energy metabolism under in vivo conditions, resulting in an increase in fermentative, propanoate, butanoate and nitrate metabolism. Abundance increases of transcription activators FNR and Nar supported the notion of a switch from aerobic to anaerobic respiration in the host gut environment. High in vivo abundances of proteins involved in acid resistance (GadB, AdiA) and mixed acid fermentation (PflA/PflB) indicated bacterial survival responses to acid stress, while increased abundance of oxidative stress proteins (YfiD/YfiF/SodB) implied that defense mechanisms against oxygen radicals were mobilized. Proteins involved in peptidoglycan turnover (MurB) were increased, while β-barrel OM proteins (OmpA), OM lipoproteins (NlpD), chaperones involved in OM protein folding pathways (YraP, NlpB) and lipopolysaccharide biosynthesis (Imp) were decreased, suggesting unexpected modulations of the outer membrane/peptidoglycan layers in vivo. Several virulence proteins of the Mxi-Spa type III secretion system and invasion plasmid antigens (Ipa proteins) required for invasion of colonic epithelial cells, and release of bacteria into the host cell cytosol were increased in vivo.ConclusionsGlobal proteomic profiling of SD1 comparing in vivo vs. in vitro proteomes revealed differential expression of proteins geared towards survival of the pathogen in the host gut environment, including increased abundance of proteins involved in anaerobic energy respiration, acid resistance and virulence. The immunogenic OspC2, OspC3 and IpgA virulence proteins were detected solely under in vivo conditions, lending credence to their candidacy as potential vaccine targets.


The Journal of Infectious Diseases | 2009

Gnotobiotic piglet infection model for evaluating the safe use of antibiotics against Escherichia coli O157:H7 infection

Quanshun Zhang; Arthur Donohou-Rolfe; Greice Krautz-Peterson; Milica Sevo; Nicola Parry; Claudia Abeijon; Saul Tzipori

BACKGROUND Shiga toxin (Stx)-producing Escherichia coli (STEC), especially O157:H7, cause bloody diarrhea, and in 3%-15% of individuals the infection leads to hemolytic uremic syndrome (HUS) or other complications. Use of antibiotics to treat STEC infections is controversial. Here, we describe the use of piglets to evaluate the efficacy and mechanism of action of antibiotics in these infections. METHODS The effects of 2 antibiotics on STEC toxin production and their mechanisms of action were first determined by enzyme-linked immunosorbent assay and subsequently evaluated clinically in the gnotobiotic piglet infection model. RESULTS In vitro treatment of clinical and isogenic strains with ciprofloxacin increased the production of Stx2 via phage induction but not the production of Stx1. Azithromycin caused no significant increase in toxin production. After treatment with ciprofloxacin, infected piglets had diarrhea and the severe fatal neurological symptoms associated with Stx2 intoxication. Characteristic petechial hemorrhages in the cerebellum were more severe in ciprofloxacin-treated animals than in control animals. In contrast, azithromycin-treated piglets survived the infection and had little or no brain hemorrhaging. CONCLUSIONS The increased in vitro toxin production caused by ciprofloxacin was strongly correlated with death and an increased rate of cerebellar hemorrhage, in contrast to the effect of azithromycin. The piglet is a suitable model for determining the effectiveness and safety of antibiotics available to treat patients.


Proteome Science | 2009

Comparison of two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the Shigella dysenteriae proteome

Srilatha Kuntumalla; John C. Braisted; Shih-Ting Huang; Prashanth P. Parmar; David J. Clark; Hamid Alami; Quanshun Zhang; Arthur Donohue-Rolfe; Saul Tzipori; Robert D. Fleischmann; Scott N. Peterson; Rembert Pieper

The in vitro stationary phase proteome of the human pathogen Shigella dysenteriae serotype 1 (SD1) was quantitatively analyzed in Coomassie Blue G250 (CBB)-stained 2D gels. More than four hundred and fifty proteins, of which 271 were associated with distinct gel spots, were identified. In parallel, we employed 2D-LC-MS/MS followed by the label-free computationally modified spectral counting method APEX for absolute protein expression measurements. Of the 4502 genome-predicted SD1 proteins, 1148 proteins were identified with a false positive discovery rate of 5% and quantitated using 2D-LC-MS/MS and APEX. The dynamic range of the APEX method was approximately one order of magnitude higher than that of CBB-stained spot intensity quantitation. A squared Pearson correlation analysis revealed a reasonably good correlation (R2= 0.67) for protein quantities surveyed by both methods. The correlation was decreased for protein subsets with specific physicochemical properties, such as low Mr values and high hydropathy scores. Stoichiometric ratios of subunits of protein complexes characterized in E. coli were compared with APEX quantitative ratios of orthologous SD1 protein complexes. A high correlation was observed for subunits of soluble cellular protein complexes in several cases, demonstrating versatile applications of the APEX method in quantitative proteomics.


Infection and Immunity | 2009

Antibody-enhanced, Fc gamma receptor-mediated endocytosis of Clostridium difficile toxin A.

Xiangyun He; Xingmin Sun; Jufang Wang; Xiaoning Wang; Quanshun Zhang; Saul Tzipori; Hanping Feng

ABSTRACT Toxin A (TcdA) and toxin B (TcdB) are major virulence factors of Clostridium difficile. These two toxins intoxicate cultured cells by similar mechanisms, and TcdB generally is more potent than TcdA in cultured cells. The exact reason for this difference is unclear. Here, we report that the cellular effects of TcdA can be substantially enhanced via an opsonizing antibody through Fc gamma receptor I (FcγRI)-mediated endocytosis. A TcdA-specific monoclonal antibody, A1H3, was found to significantly enhance the cytotoxicity of TcdA to macrophages and monocytes. The A1H3-dependent enhancement of glucosyltransferase activity, cytoskeleton disruption, and tumor necrosis factor alpha production induced by TcdA was further demonstrated using RAW 264.7 cells. Subsequent experiments indicated that the interaction of FcγRI with A1H3 underlays the antibody-dependent enhancement of the cellular effects of TcdA. While blocking FcγRII and FcγRIII with anti-CD16/32 antibodies did not affect the TcdA-mediated glucosylation of Rac1 in RAW 264.7 cells, presaturation of FcγRI with anti-CD64 antibodies in THP1 cells significantly reduced this activity. Incubation of a TcdA-A1H3 immune complex with recombinant mouse CD64 completely abrogated the A1H3-mediated enhancement of the glucosyltransferase activity of TcdA in RAW 264.7 cells. Moreover, expression of FcγRI in CHO cells strikingly enhanced the sensitivity of these cells to TcdA complexed with A1H3. We showed that the presence of A1H3 facilitated cell surface recruitment of TcdA, contributing to the antibody-dependent, FcγRI-mediated enhancement of TcdA activity. Finally, studies using chlorpromazine and endosomal acidification inhibitors revealed an important role of the endocytic pathway in the A1H3-dependent enhancement of TcdA activity.


The Journal of Infectious Diseases | 2010

A Piglet Model of Acute Gastroenteritis Induced by Shigella dysenteriae Type 1

Kwang-il Jeong; Quanshun Zhang; John Nunnari; Saul Tzipori

BACKGROUND The lack of a standardized laboratory animal model that mimics key aspects of human shigellosis remains a major obstacle to addressing questions about pathogenesis, screening therapeutics, and evaluation of vaccines. METHODS We characterized a piglet model for Shigella dysenteriae type 1. RESULTS Piglets developed acute diarrhea, anorexia, and dehydration, which could often be fatal, with symptom severity depending on age and dose. Bacteria were apparent in the lumen and on the surface epithelium throughout the gut initially, but severe mucosal damage and bacterial cellular invasion were most profound in the colon. Detached necrotic colonocytes were present in the lumen, with inflammatory cells outpouring from damaged mucosa. High levels of interleukin (IL)-8 and IL-12 were followed by high levels of other proinflammatory cytokines. Elevated levels of tumor necrosis factor-alpha, IL-1beta, IL-6, and IL-10 were detected in feces and in gut segments from infected animals. Bacteria were present inside epithelial cells and within colonic lamina propria. In contrast, an isogenic strain lacking Shiga toxin induced similar but milder symptoms, with moderate mucosal damage and lower cytokine levels. CONCLUSION We conclude that piglets are highly susceptible to shigellosis, providing a useful tool with which to compare vaccine candidates for immunogenicity, reactogenicity, and response to challenge; investigate the role of virulence factors; and test the efficacy of microbial agents.


Infection and Immunity | 2006

Bile Acids Enhance Invasiveness of Cryptosporidium spp. into Cultured Cells

Hanping Feng; Weijia Nie; Abhineet S. Sheoran; Quanshun Zhang; Saul Tzipori

ABSTRACT Bile salts such as sodium taurocholate (NaTC) are routinely used to induce the excystation of Cryptosporidium oocysts. Here we show that NaTC significantly enhanced the invasion of several cultured cell lines by freshly excysted Cryptosporidium parvum and Cryptosporidium hominis sporozoites. A variety of purified bile salts or total bile from bovine also enhanced the invasion of cultured cells by C. parvum. Further studies demonstrated that NaTC increased protein secretion and gliding motility of sporozoites, the key processes for successful invasion. These observations may lead to improved Cryptosporidium infectivity of cultured cells and help future studies on the host-parasite interaction.


Journal of Eukaryotic Microbiology | 2007

Analysis of the β-Tubulin Genes from Enterocytozoon bieneusi Isolates from a Human and Rhesus Macaque

Louis M. Weiss; Xiaochuan Feng; Bryony A. P. Williams; Patrick J. Keeling; Quanshun Zhang; Saul Tzipori

ABSTRACT. Enterocytozoon bieneusi is the most common and clinically significant microsporidium associated with chronic diarrhea and wasting in immunocompromised humans. Albendazole, which is effective against several helminths, protozoa, and microsporidia, is relatively ineffective against infections due to E. bieneusi. A likely explanation for the observed clinical resistance to albendazole was discovered from sequence analysis of the E. bieneusiβ‐tubulin from isolates from an infected human and a naturally infected rhesus macaque. The β‐tubulin of E. bieneusi has a substitution at Glu198, which is one of six amino acids reported to be associated with benzimidazole sensitivity.

Collaboration


Dive into the Quanshun Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rembert Pieper

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Clark

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shih-Ting Huang

J. Craig Venter Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge