Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Quanwei Zhang is active.

Publication


Featured researches published by Quanwei Zhang.


International Journal of Molecular Sciences | 2014

Molecular Cloning, Bioinformatics Analysis and Expression of Insulin-Like Growth Factor 2 from Tianzhu White Yak, Bos grunniens

Quanwei Zhang; Jishang Gong; Xueying Wang; Xiaohu Wu; Yalan Li; Youji Ma; Yong Zhang; Xingxu Zhao

The IGF family is essential for normal embryonic and postnatal development and plays important roles in the immune system, myogenesis, bone metabolism and other physiological functions, which makes the study of its structure and biological characteristics important. Tianzhu white yak (Bos grunniens) domesticated under alpine hypoxia environments, is well adapted to survive and grow against severe hypoxia and cold temperatures for extended periods. In this study, a full coding sequence of the IGF2 gene of Tianzhu white yak was amplified by reverse transcription PCR and rapid-amplification of cDNA ends (RACE) for the first time. The cDNA sequence revealed an open reading frame of 450 nucleotides, encoding a protein with 179 amino acids. Its expression in different tissues was also studied by Real time PCR. Phylogenetic tree analysis indicated that yak IGF2 was similar to Bos taurus, and 3D structure showed high similarity with the human IGF2. The putative full CDS of yak IGF2 was amplified by PCR in five tissues, and cDNA sequence analysis showed high homology to bovine IGF2. Moreover the super secondary structure prediction showed a similar 3D structure with human IGF2. Its conservation in sequence and structure has facilitated research on IGF2 and its physiological function in yak.


Genomics | 2015

Analysis of copy number variations by SNP50 BeadChip array in Chinese sheep

Youji Ma; Quanwei Zhang; Zengkui Lu; Xingxu Zhao; Yong Zhang

The sheep (Ovis aries) plays a major socio-economic role in the world. Copy number variations (CNVs) are increasingly recognized as a key and potent source of genetic variation and phenotypic diversity, but little is known about the extent to which CNVs contribute to genetic variation in Chinese sheep breeds. Analyses of CNVs in the genomes of eight sheep breeds were performed using the sheep SNP50 BeadChip genotyping array. A total of 111 CNV regions (CNVRs) were obtained from 160 Chinese sheep breeds. These CNVRs covered 13.75Mb of the sheep genome sequence. A total of 22 Go terms and 17 candidate genes were obtained from the functional analysis. Ten CNVRs were selected for validation, of which 7 CNVRs were further experimentally confirmed by quantitative PCR. Four candidate genes were selected to confirm the results of the functional analysis. These results provide a resource for furthering understanding of ruminant biology, and for further improving the genetic quality of sheep breeds.


Reproduction | 2018

Identification and verification of potential piRNAs from domesticated yak testis

Jishang Gong; Quanwei Zhang; Qi Wang; Youji Ma; Jiaxiang Du; Yong Zhang; Xingxu Zhao

PIWI-interacting RNAs (piRNA) are small non-coding RNA molecules expressed in animal germ cells that interact with PIWI family proteins to form RNA–protein complexes involved in epigenetic and post-transcriptional gene silencing of retrotransposons and other genetic elements in germ line cells, including reproductive stem cell self-sustainment, differentiation, meiosis and spermatogenesis. In the present study, we performed high-throughput sequencing of piRNAs in testis samples from yaks in different stages of sexual maturity. Deep sequencing of the small RNAs (18–40 nt in length) yielded 4,900,538 unique reads from a total of 53,035,635 reads. We identified yak small RNAs (18–30 nt) and performed functional characterization. Yak small RNAs showed a bimodal length distribution, with two peaks at 22 nt and >28 nt. More than 80% of the 3,106,033 putative piRNAs were mapped to 4637 piRNA-producing genomic clusters using RPKM. 6388 candidate piRNAs were identified from clean reads and the annotations were compared with the yak reference genome repeat region. Integrated network analysis suggested that some differentially expressed genes were involved in spermatogenesis through ECM–receptor interaction and PI3K-Akt signaling pathways. Our data provide novel insights into the molecular expression and regulation similarities and diversities in spermatogenesis and testicular development in yaks at different stages of sexual maturity.


Genes | 2018

Yak IGF2 Promotes Fibroblast Proliferation Via Suppression of IGF1R and PI3KCG Expression

Quanwei Zhang; Qi Wang; Jishang Gong; Jiaxing Du; Yong Zhang; Xingxu Zhao

Insulin-like growth factor 2 (IGF2) recapitulates many of the activities of insulin and promotes differentiation of myoblasts and osteoblasts, which likely contribute to genetic variations of growth potential. However, little is known about the functions and signaling properties of IGF2 variants in yaks. The over-expression vector and knockdown sequence of yak IGF2 were transfected into yak fibroblasts, and the effects were detected by a series of assays. IGF2 expression in yak muscle tissues was significantly lower than that of other tissues. In yak fibroblasts, the up-regulated expression of IGF2 inhibits expression of IGF1 and insulin-like growth factor 2 receptor (IGF2R) and significantly up-regulates expression of IGF1R. Inhibition of IGF2 expression caused the up-regulates expression of IGF1, IGF1R and IGF2R. Both over-expression and knockdown of IGF2 resulted in up-regulation of threonine protein kinase 1 (Akt1) expression and down-regulation of phosphatidylinositol 3-kinase, catalytic subunit gamma (PIK3CG). Cell cycle and cell proliferation assays revealed that over-expression of IGF2 enhanced the DNA synthesis phase and promoted yak fibroblasts proliferation. Conversely, knockdown of IGF2 decreased DNA synthesis and inhibited proliferation. These results suggested that IGF2 was negatively correlated with IGF1R and PIK3CG and demonstrated an association with the IGFs-PI3K-Akt (IGFs-phosphatidylinositol 3-kinase- threonine protein kinase) pathway in cell proliferation and provided evidence supporting the functional role of IGF2 for use in improving the production performance of yaks.


Journal of Integrative Agriculture | 2015

Identification of novel and differentially expressed microRNAs in ovine ovary and testis tissues using Solexa sequencing and bioinformatics

Weihua Chang; Yong Zhang; Zhangrui Cheng; Xingxu Zhao; Juanhong Wang; Youji Ma; Jun-jie Hu; Quanwei Zhang

MicroRNAs (miRNAs) are small, single stranded, non-coding RNA molecules, about 19–25 nucleotides in length, which regulate the development and functions of reproductive system of mammal. To discover novel miRNAs and identify the differential expression of them in ovine ovary and testis tissues, the study constructed two libraries by using next-generation sequencing technologies (Solexa high-throughput sequencing technique). As a result, 9 321 775 and 9 511 538 clean reads were obtained from the ovary and testis separately, which included 130 562 (90 genes of ovary) and 56 272 (85 genes of testis) of known miRNAs and 486 potential novel miRNAs reads. In this study, a total of 65 conserved miRNAs were significantly differentially expressed (P<0.01) between the two samples. Among them, 28 miRNAs were up-regulated and 3 miRNAs were down-regulated on ovary compared with testis. In addition, the known miRNAs with the highest expression level (5 miRNAs) and 30 novel miRNAs with the functions related to reproduction were validated using the real-time quantitative RT-PCR. Moreover, the gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that differentially expressed miRNAs were involved in ovary and testis physiology, including signal transduction, gonad development, sex differentiation, gematogenesis, fertilization and embryo development. The results will be helpful to facilitate studies on the regulation of miRNAs during ruminant reproduction.


International Journal of Molecular Sciences | 2018

Comprehensive Analysis of MicroRNA–Messenger RNA from White Yak Testis Reveals the Differentially Expressed Molecules Involved in Development and Reproduction

Quanwei Zhang; Qi Wang; Yong Zhang; Shuru Cheng; Junjie Hu; Youji Ma; Xingxu Zhao

Testis development is a vital and tightly regulated process in mammals. Understanding the biological mechanisms underlying testis development will benefit the animal reproduction industry. Expression changes in microRNA and messenger RNA in response to dynamic regulation effects have been associated with this process. However, very little is known about the roles of these molecules in yak development. Using whole-genome small RNA and messenger RNA sequencing, we performed a comprehensive analysis of the microRNA–messenger RNA interaction network expression in the testicles of Tianzhu white yaks during three developmental stages. Using Short Time-series Expression Miner analysis we identified 589 differentially expressed microRNAs (DERs) and 3383 differentially expressed messenger RNAs (DEGs) in the three age groups. A total of 93 unique DEGs are primarily involved in reproduction and testis development. Subsequently, four integration networks were constructed according to the DEGs and DERs in three biological processes. Nineteen DEGs were potentially regulated by 60 DERs, of which miR-574 and target gene AURKA played a crucial role in yak testis development and reproduction. The results of this study provide a basis for further exploration of the microRNA–messenger RNA interactions in testis development and reproduction and aid in uncovering the molecular mechanisms of spermatogenesis in male mammals.


Dose-response | 2018

Comparative Profiling of MicroRNAs Reveals the Underlying Toxicological Mechanism in Mice Testis Following Carbon Ion Radiation

Yuxuan He; Yong Zhang; Hongyan Li; Hong Zhang; Zongshuai Li; Longfei Xiao; Junjie Hu; Youji Ma; Quanwei Zhang; Xingxu Zhao

This study investigated the toxicity of heavy ion radiation to mice testis by microRNA (miRNA) sequencing and bioinformatics analyses. Testicular indices and histology were measured following enterocoelia irradiation with a 2 Gy carbon ion beam, with the testes exhibiting the most serious injuries at 4 weeks after carbon ion radiation (CIR) exposure. Illumina sequencing technology was used to sequence small RNA libraries of the control and irradiated groups at 4 weeks after CIR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses implicated differential miRNAs in the regulation of target genes involved in metabolism, development, and reproduction. Here, 8 miRNAs, including miR-34c-5p, miR-138, and 6 let-7 miRNA family members previously reported in testis after radiation, were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to validate miRNA sequencing data. The differentially expressed miRNAs described here provided a novel perspective for the role of miRNAs in testis toxicity following CIR.


Animal Reproduction Science | 2017

Proteomic analyses of ram (Ovis aries) testis during different developmental stages

Zengkui Lu; Youji Ma; Quanwei Zhang; Xingxu Zhao; Yong Zhang; Liping Zhang

Male reproductive capacity is essential for animal breeding and reproduction. In males, the testes produce sperm and secrete androgen, processes which require precise regulation by multiple proteins. The composition of proteins in the ram testes has not yet been studied systematically, thus, the application of proteomics to explore differential protein regulation during ram testes development is of great significance. In the present study, ram testes were studied at five different developmental phases to assess postnatal differences in protein regulation. Two dimensional electrophoresis (2-DE) was used to separate ram testes proteins at each developmental phase, yielding 45 different proteins, 37 of which were identified by Matrix Assisted Laser Desorption Ionization-Time of Flight-Time of Flight-Mass Spectrometry (MALDI-TOF/TOF-MS). Gene Ontology (GO) was used to specifically annotate the biological process, cellular composition, and molecular function of each identified protein. Most of the identified proteins were involved in structural formation, development, reproduction, and apoptosis of the testicular spermatogenic tissue and spermatozoa. Quantitative real time PCR (qRT-PCR), western blot and immunohistochemical methods were used to verify the proteins, and the results were consistent with that of 2-DE. The proteins that were different in abundance that were identified in this study can be used as biomarkers in future studies of ram reproduction.


Molecular Genetics and Genomics | 2015

Identification of copy number variations in Qinchuan cattle using BovineHD Genotyping Beadchip array

Quanwei Zhang; Youji Ma; Xueying Wang; Yong Zhang; Xingxu Zhao


Journal of Computational and Theoretical Nanoscience | 2017

Molecular Characteristics of the HO1 Gene in Yak are Potentially Adaptive for High Altitude Habitats

Quanwei Zhang; Yong Zhang; Youji Ma; Xingxu Zhao

Collaboration


Dive into the Quanwei Zhang's collaboration.

Top Co-Authors

Avatar

Xingxu Zhao

Gansu Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yong Zhang

Gansu Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Youji Ma

Gansu Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jishang Gong

Gansu Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Junjie Hu

Gansu Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Longfei Xiao

Gansu Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaohu Wu

Gansu Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zengkui Lu

Gansu Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fadi Li

Gansu Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge