Youji Ma
Gansu Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youji Ma.
International Journal of Molecular Sciences | 2014
Quanwei Zhang; Jishang Gong; Xueying Wang; Xiaohu Wu; Yalan Li; Youji Ma; Yong Zhang; Xingxu Zhao
The IGF family is essential for normal embryonic and postnatal development and plays important roles in the immune system, myogenesis, bone metabolism and other physiological functions, which makes the study of its structure and biological characteristics important. Tianzhu white yak (Bos grunniens) domesticated under alpine hypoxia environments, is well adapted to survive and grow against severe hypoxia and cold temperatures for extended periods. In this study, a full coding sequence of the IGF2 gene of Tianzhu white yak was amplified by reverse transcription PCR and rapid-amplification of cDNA ends (RACE) for the first time. The cDNA sequence revealed an open reading frame of 450 nucleotides, encoding a protein with 179 amino acids. Its expression in different tissues was also studied by Real time PCR. Phylogenetic tree analysis indicated that yak IGF2 was similar to Bos taurus, and 3D structure showed high similarity with the human IGF2. The putative full CDS of yak IGF2 was amplified by PCR in five tissues, and cDNA sequence analysis showed high homology to bovine IGF2. Moreover the super secondary structure prediction showed a similar 3D structure with human IGF2. Its conservation in sequence and structure has facilitated research on IGF2 and its physiological function in yak.
Scientific Reports | 2016
Caihong Wei; Huihua Wang; Gang Liu; Fuping Zhao; James W. Kijas; Youji Ma; Jian Lu; Li Zhang; Jiaxue Cao; Mingming Wu; Guangkai Wang; Ruizao Liu; Zhen Liu; Shuzhen Zhang; Chousheng Liu; Lixin Du
Tibetan sheep have lived on the Tibetan Plateau for thousands of years; however, the process and consequences of adaptation to this extreme environment have not been elucidated for important livestock such as sheep. Here, seven sheep breeds, representing both highland and lowland breeds from different areas of China, were genotyped for a genome-wide collection of single-nucleotide polymorphisms (SNPs). The FST and XP-EHH approaches were used to identify regions harbouring local positive selection between these highland and lowland breeds, and 236 genes were identified. We detected selection events spanning genes involved in angiogenesis, energy production and erythropoiesis. In particular, several candidate genes were associated with high-altitude hypoxia, including EPAS1, CRYAA, LONP1, NF1, DPP4, SOD1, PPARG and SOCS2. EPAS1 plays a crucial role in hypoxia adaption; therefore, we investigated the exon sequences of EPAS1 and identified 12 mutations. Analysis of the relationship between blood-related phenotypes and EPAS1 genotypes in additional highland sheep revealed that a homozygous mutation at a relatively conserved site in the EPAS1 3′ untranslated region was associated with increased mean corpuscular haemoglobin concentration and mean corpuscular volume. Taken together, our results provide evidence of the genetic diversity of highland sheep and indicate potential high-altitude hypoxia adaptation mechanisms, including the role of EPAS1 in adaptation.
Genomics | 2015
Youji Ma; Quanwei Zhang; Zengkui Lu; Xingxu Zhao; Yong Zhang
The sheep (Ovis aries) plays a major socio-economic role in the world. Copy number variations (CNVs) are increasingly recognized as a key and potent source of genetic variation and phenotypic diversity, but little is known about the extent to which CNVs contribute to genetic variation in Chinese sheep breeds. Analyses of CNVs in the genomes of eight sheep breeds were performed using the sheep SNP50 BeadChip genotyping array. A total of 111 CNV regions (CNVRs) were obtained from 160 Chinese sheep breeds. These CNVRs covered 13.75Mb of the sheep genome sequence. A total of 22 Go terms and 17 candidate genes were obtained from the functional analysis. Ten CNVRs were selected for validation, of which 7 CNVRs were further experimentally confirmed by quantitative PCR. Four candidate genes were selected to confirm the results of the functional analysis. These results provide a resource for furthering understanding of ruminant biology, and for further improving the genetic quality of sheep breeds.
Reproduction | 2018
Jishang Gong; Quanwei Zhang; Qi Wang; Youji Ma; Jiaxiang Du; Yong Zhang; Xingxu Zhao
PIWI-interacting RNAs (piRNA) are small non-coding RNA molecules expressed in animal germ cells that interact with PIWI family proteins to form RNA–protein complexes involved in epigenetic and post-transcriptional gene silencing of retrotransposons and other genetic elements in germ line cells, including reproductive stem cell self-sustainment, differentiation, meiosis and spermatogenesis. In the present study, we performed high-throughput sequencing of piRNAs in testis samples from yaks in different stages of sexual maturity. Deep sequencing of the small RNAs (18–40 nt in length) yielded 4,900,538 unique reads from a total of 53,035,635 reads. We identified yak small RNAs (18–30 nt) and performed functional characterization. Yak small RNAs showed a bimodal length distribution, with two peaks at 22 nt and >28 nt. More than 80% of the 3,106,033 putative piRNAs were mapped to 4637 piRNA-producing genomic clusters using RPKM. 6388 candidate piRNAs were identified from clean reads and the annotations were compared with the yak reference genome repeat region. Integrated network analysis suggested that some differentially expressed genes were involved in spermatogenesis through ECM–receptor interaction and PI3K-Akt signaling pathways. Our data provide novel insights into the molecular expression and regulation similarities and diversities in spermatogenesis and testicular development in yaks at different stages of sexual maturity.
Gene | 2018
Taotao Li; Zengkui Lu; Ruirui Luo; Jianfeng Gao; Xingxu Zhao; Youji Ma
Double sex and mab-3 related transcription factor 1 (Dmrt1), an evolutionarily conserved gene, is a sex-related gene expressed in male gonads, that is involved in the regulation of sex differentiation, testicular development and reproductive function maintenance. Until now, functional studies on the Dmrt1 gene in sheep (Ovis aries) have been lacking. In this study, testis, heart, liver, spleen, lung, kidney and longissimus dorsi muscle tissues were collected from Small-Tail Han sheep at 0, 2, 5, 12 and 24months after birth (mab). Dmrt1 expression and cellular localization were detected in various testicular tissues by quantitative real time PCR (qRT-PCR), western blot and immunohistochemistry methods. The morphological structures of testicular tissues at different developmental stages were observed by hematoxylin & eosin (HE) staining. The Dmrt1 mRNA expression levels in 12 and 24 mab sheep were significantly higher than those in 0 and 2 mab sheep (P<0.05), and Dmrt1 protein expression showed a similar trend. The qRT-PCR results in various tissues at 12 mab showed that Dmrt1 mRNA was predominantly expressed in testes. Immunohistochemical staining in testes at different developmental stages showed that Dmrt1 protein immunoreactive responses were mainly localized in Sertoli cells and gonocytes at 0, 2 and 5 mab, while they were localized in spermatocytes, sperm cells and some spermatogonia and Sertoli cells at 12 and 24 mab. We speculate that the Dmrt1 gene plays a vital role in postnatal sheep spermatogenesis, perhaps by regulating the maturation and functional maintenance of Sertoli cells, the proliferation and differentiation of gonocytes in prepubertal sheep testes, and the mitosis and meiosis of germ cells in adult sheep, but the specific mechanisms underlying these phenomena must be further studied and verified. ABBREVIATIONS
International Journal of Molecular Sciences | 2018
Quanwei Zhang; Qi Wang; Yong Zhang; Shuru Cheng; Junjie Hu; Youji Ma; Xingxu Zhao
Testis development is a vital and tightly regulated process in mammals. Understanding the biological mechanisms underlying testis development will benefit the animal reproduction industry. Expression changes in microRNA and messenger RNA in response to dynamic regulation effects have been associated with this process. However, very little is known about the roles of these molecules in yak development. Using whole-genome small RNA and messenger RNA sequencing, we performed a comprehensive analysis of the microRNA–messenger RNA interaction network expression in the testicles of Tianzhu white yaks during three developmental stages. Using Short Time-series Expression Miner analysis we identified 589 differentially expressed microRNAs (DERs) and 3383 differentially expressed messenger RNAs (DEGs) in the three age groups. A total of 93 unique DEGs are primarily involved in reproduction and testis development. Subsequently, four integration networks were constructed according to the DEGs and DERs in three biological processes. Nineteen DEGs were potentially regulated by 60 DERs, of which miR-574 and target gene AURKA played a crucial role in yak testis development and reproduction. The results of this study provide a basis for further exploration of the microRNA–messenger RNA interactions in testis development and reproduction and aid in uncovering the molecular mechanisms of spermatogenesis in male mammals.
Dose-response | 2018
Yuxuan He; Yong Zhang; Hongyan Li; Hong Zhang; Zongshuai Li; Longfei Xiao; Junjie Hu; Youji Ma; Quanwei Zhang; Xingxu Zhao
This study investigated the toxicity of heavy ion radiation to mice testis by microRNA (miRNA) sequencing and bioinformatics analyses. Testicular indices and histology were measured following enterocoelia irradiation with a 2 Gy carbon ion beam, with the testes exhibiting the most serious injuries at 4 weeks after carbon ion radiation (CIR) exposure. Illumina sequencing technology was used to sequence small RNA libraries of the control and irradiated groups at 4 weeks after CIR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses implicated differential miRNAs in the regulation of target genes involved in metabolism, development, and reproduction. Here, 8 miRNAs, including miR-34c-5p, miR-138, and 6 let-7 miRNA family members previously reported in testis after radiation, were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to validate miRNA sequencing data. The differentially expressed miRNAs described here provided a novel perspective for the role of miRNAs in testis toxicity following CIR.
Animal Reproduction Science | 2017
Zengkui Lu; Youji Ma; Quanwei Zhang; Xingxu Zhao; Yong Zhang; Liping Zhang
Male reproductive capacity is essential for animal breeding and reproduction. In males, the testes produce sperm and secrete androgen, processes which require precise regulation by multiple proteins. The composition of proteins in the ram testes has not yet been studied systematically, thus, the application of proteomics to explore differential protein regulation during ram testes development is of great significance. In the present study, ram testes were studied at five different developmental phases to assess postnatal differences in protein regulation. Two dimensional electrophoresis (2-DE) was used to separate ram testes proteins at each developmental phase, yielding 45 different proteins, 37 of which were identified by Matrix Assisted Laser Desorption Ionization-Time of Flight-Time of Flight-Mass Spectrometry (MALDI-TOF/TOF-MS). Gene Ontology (GO) was used to specifically annotate the biological process, cellular composition, and molecular function of each identified protein. Most of the identified proteins were involved in structural formation, development, reproduction, and apoptosis of the testicular spermatogenic tissue and spermatozoa. Quantitative real time PCR (qRT-PCR), western blot and immunohistochemical methods were used to verify the proteins, and the results were consistent with that of 2-DE. The proteins that were different in abundance that were identified in this study can be used as biomarkers in future studies of ram reproduction.
Molecular Genetics and Genomics | 2015
Quanwei Zhang; Youji Ma; Xueying Wang; Yong Zhang; Xingxu Zhao
Cryobiology | 2016
Yuxuan He; Ke Wang; Xingxu Zhao; Yong Zhang; Youji Ma; Junjie Hu