Qunying Huang
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qunying Huang.
International Journal of Digital Earth | 2011
Chaowei Phil Yang; Michael F. Goodchild; Qunying Huang; Doug Nebert; Robert Raskin; Yan Xu; Myra Bambacus; Dan Fay
Abstract The geospatial sciences face grand information technology (IT) challenges in the twenty-first century: data intensity, computing intensity, concurrent access intensity and spatiotemporal intensity. These challenges require the readiness of a computing infrastructure that can: (1) better support discovery, access and utilization of data and data processing so as to relieve scientists and engineers of IT tasks and focus on scientific discoveries; (2) provide real-time IT resources to enable real-time applications, such as emergency response; (3) deal with access spikes; and (4) provide more reliable and scalable service for massive numbers of concurrent users to advance public knowledge. The emergence of cloud computing provides a potential solution with an elastic, on-demand computing platform to integrate – observation systems, parameter extracting algorithms, phenomena simulations, analytical visualization and decision support, and to provide social impact and user feedback – the essential elements of the geospatial sciences. We discuss the utilization of cloud computing to support the intensities of geospatial sciences by reporting from our investigations on how cloud computing could enable the geospatial sciences and how spatiotemporal principles, the kernel of the geospatial sciences, could be utilized to ensure the benefits of cloud computing. Four research examples are presented to analyze how to: (1) search, access and utilize geospatial data; (2) configure computing infrastructure to enable the computability of intensive simulation models; (3) disseminate and utilize research results for massive numbers of concurrent users; and (4) adopt spatiotemporal principles to support spatiotemporal intensive applications. The paper concludes with a discussion of opportunities and challenges for spatial cloud computing (SCC).
Proceedings of the National Academy of Sciences of the United States of America | 2011
Chaowei Yang; Huayi Wu; Qunying Huang; Zhenlong Li; Jing Li
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.
International Journal of Digital Earth | 2017
Chaowei Yang; Qunying Huang; Zhenlong Li; Kai Liu; Fei Hu
ABSTRACT Big Data has emerged in the past few years as a new paradigm providing abundant data and opportunities to improve and/or enable research and decision-support applications with unprecedented value for digital earth applications including business, sciences and engineering. At the same time, Big Data presents challenges for digital earth to store, transport, process, mine and serve the data. Cloud computing provides fundamental support to address the challenges with shared computing resources including computing, storage, networking and analytical software; the application of these resources has fostered impressive Big Data advancements. This paper surveys the two frontiers – Big Data and cloud computing – and reviews the advantages and consequences of utilizing cloud computing to tackling Big Data in the digital earth and relevant science domains. From the aspects of a general introduction, sources, challenges, technology status and research opportunities, the following observations are offered: (i) cloud computing and Big Data enable science discoveries and application developments; (ii) cloud computing provides major solutions for Big Data; (iii) Big Data, spatiotemporal thinking and various application domains drive the advancement of cloud computing and relevant technologies with new requirements; (iv) intrinsic spatiotemporal principles of Big Data and geospatial sciences provide the source for finding technical and theoretical solutions to optimize cloud computing and processing Big Data; (v) open availability of Big Data and processing capability pose social challenges of geospatial significance and (vi) a weave of innovations is transforming Big Data into geospatial research, engineering and business values. This review introduces future innovations and a research agenda for cloud computing supporting the transformation of the volume, velocity, variety and veracity into values of Big Data for local to global digital earth science and applications.
International Journal of Digital Earth | 2013
Qunying Huang; Chaowei Yang; Karl Benedict; Songqing Chen; Abdelmounaam Rezgui; Jibo Xie
Abstract The simulations and potential forecasting of dust storms are of significant interest to public health and environment sciences. Dust storms have interannual variabilities and are typical disruptive events. The computing platform for a dust storm forecasting operational system should support a disruptive fashion by scaling up to enable high-resolution forecasting and massive public access when dust storms come and scaling down when no dust storm events occur to save energy and costs. With the capability of providing a large, elastic, and virtualized pool of computational resources, cloud computing becomes a new and advantageous computing paradigm to resolve scientific problems traditionally requiring a large-scale and high-performance cluster. This paper examines the viability for cloud computing to support dust storm forecasting. Through a holistic study by systematically comparing cloud computing using Amazon EC2 to traditional high performance computing (HPC) cluster, we find that cloud computing is emerging as a credible solution for (1) supporting dust storm forecasting in spinning off a large group of computing resources in a few minutes to satisfy the disruptive computing requirements of dust storm forecasting, (2) performing high-resolution dust storm forecasting when required, (3) supporting concurrent computing requirements, (4) supporting real dust storm event forecasting for a large geographic domain by using recent dust storm event in Phoniex, 05 July 2011 as example, and (5) reducing cost by maintaining low computing support when there is no dust storm events while invoking a large amount of computing resource to perform high-resolution forecasting and responding to large amount of concurrent public accesses.
ISPRS international journal of geo-information | 2015
Qunying Huang; Yu Xiao
Social media data have emerged as a new source for detecting and monitoring disaster events. A number of recent studies have suggested that social media data streams can be used to mine actionable data for emergency response and relief operation. However, no effort has been made to classify social media data into stages of disaster management (mitigation, preparedness, emergency response, and recovery), which has been used as a common reference for disaster researchers and emergency managers for decades to organize information and streamline priorities and activities during the course of a disaster. This paper makes an initial effort in coding social media messages into different themes within different disaster phases during a time-critical crisis by manually examining more than 10,000 tweets generated during a natural disaster and referencing the findings from the relevant literature and official government procedures involving different disaster stages. Moreover, a classifier based on logistic regression is trained and used for automatically mining and classifying the social media messages into various topic categories during various disaster phases. The classification results are necessary and useful for emergency managers to identify the transition between phases of disaster management, the timing of which is usually unknown and varies across disaster events, so that they can take action quickly and efficiently in the impacted communities. Information generated from the classification can also be used by the social science research communities to study various aspects of preparedness, response, impact and recovery.
Computers & Geosciences | 2013
Qunying Huang; Chaowei Yang; Kai Liu; Jizhe Xia; Chen Xu; Jing Li; Zhipeng Gui; Min Sun; Zhenglong Li
Many organizations start to adopt cloud computing for better utilizing computing resources by taking advantage of its scalability, cost reduction, and easy to access characteristics. Many private or community cloud computing platforms are being built using open-source cloud solutions. However, little has been done to systematically compare and evaluate the features and performance of open-source solutions in supporting Geosciences. This paper provides a comprehensive study of three open-source cloud solutions, including OpenNebula, Eucalyptus, and CloudStack. We compared a variety of features, capabilities, technologies and performances including: (1) general features and supported services for cloud resource creation and management, (2) advanced capabilities for networking and security, and (3) the performance of the cloud solutions in provisioning and operating the cloud resources as well as the performance of virtual machines initiated and managed by the cloud solutions in supporting selected geoscience applications. Our study found that: (1) no significant performance differences in central processing unit (CPU), memory and I/O of virtual machines created and managed by different solutions, (2) OpenNebula has the fastest internal network while both Eucalyptus and CloudStack have better virtual machine isolation and security strategies, (3) Cloudstack has the fastest operations in handling virtual machines, images, snapshots, volumes and networking, followed by OpenNebula, and (4) the selected cloud computing solutions are capable for supporting concurrent intensive web applications, computing intensive applications, and small-scale model simulations without intensive data communication.
Computers & Geosciences | 2013
Jing Li; Yunfeng Jiang; Chaowei Yang; Qunying Huang; Matthew T. Rice
Visualizing 3D/4D environmental data is critical to understanding and predicting environmental phenomena for relevant decision making. This research explores how to best utilize graphics process units (GPUs) and central processing units (CPUs) collaboratively to speed up a generic geovisualization process. Taking the visualization of dust storms as an example, we developed a systematic 3D/4D geovisualization framework including preprocessing, coordinate transformation interpolation, and rendering. To compare the potential speedup of using GPUs versus that of using CPUs, we have implemented visualization components based on both multi-core CPUs and many-core GPUs. We found that (1) multi-core CPUs and many-core GPUs can improve the efficiency of mathematical calculations and rendering using multithreading techniques; (2) given the same amount of data, when increasing the size of blocks of GPUs for coordinate transformation, the executing time of interpolation and rendering drops consistently after reaching a peak; (3) the best performances obtained by GPU-based implementations in all the three major processes, are usually faster than CPU-based implementations whereas the best performance of rendering with GPUs is very close to that with CPUs; and (4) as the GPU on-board memory limits the capabilities of processing large volume data, preprocessing data with CPUs is necessary when visualizing large volume data which exceed the on-board memory of GPUs. However, the efficiency may be significantly hampered by the relative high-latency of the data exchange between CPUs and GPUs. Therefore, visualization of median size 3D/4D environmental data using GPUs is a better solution than that of using CPUs.
Proceedings of the ACM SIGSPATIAL International Workshop on High Performance and Distributed Geographic Information Systems | 2010
Qunying Huang; Chaowei Yang; Doug Nebert; Kai Liu; Huayi Wu
To test the utilization of cloud computing for Geosciences applications, the GEOSS clearinghouse was deployed, maintained and tested on the Amazon Elastic Cloud Computing (EC2) platform. The GEOSS Clearinghouse is a web based Geographic Metadata Catalog System, which manages millions of the metadata of the spatially referenced resources for the Global Earth Observations (GEO). Our experiment reveals that the EC2 cloud computing platform facilitates geospatial applications in the aspects of a) scalability, b) reliability, and c) reducing duplicated efforts among Geosciences communities. Our test of massive data inquiry by concurrent user requests proves that different applications should be justified and optimized when deploying onto the EC2 platform for a better balance of cost and performance.
International Journal of Geographical Information Science | 2013
Qunying Huang; Chaowei Yang; Karl Benedict; Abdelmounaam Rezgui; Jibo Xie; Jizhe Xia; Songqing Chen
Forecasting dust storms for large geographical areas with high resolution poses great challenges for scientific and computational research. Limitations of computing power and the scalability of parallel systems preclude an immediate solution to such challenges. This article reports our research on using adaptively coupled models to resolve the computational challenges and enable the computability of dust storm forecasting by dividing the large geographical domain into multiple subdomains based on spatiotemporal distributions of the dust storm. A dust storm model (Eta-8bin) performs a quick forecasting with low resolution (22 km) to identify potential hotspots with high dust concentration. A finer model, non-hydrostatic mesoscale model (NMM-dust) performs high-resolution (3 km) forecasting over the much smaller hotspots in parallel to reduce computational requirements and computing time. We also adopted spatiotemporal principles among computing resources and subdomains to optimize parallel systems and improve the performance of high-resolution NMM-dust model. This research enabled the computability of high-resolution, large-area dust storm forecasting using the adaptively coupled execution of the two models Eta-8bin and NMM-dust.
International Journal of Geographical Information Science | 2016
Qunying Huang; David W. S. Wong
ABSTRACT Individual activity patterns are influenced by a wide variety of factors. The more important ones include socioeconomic status (SES) and urban spatial structure. While most previous studies relied heavily on the expensive travel-diary type data, the feasibility of using social media data to support activity pattern analysis has not been evaluated. Despite the various appealing aspects of social media data, including low acquisition cost and relatively wide geographical and international coverage, these data also have many limitations, including the lack of background information of users, such as home locations and SES. A major objective of this study is to explore the extent that Twitter data can be used to support activity pattern analysis. We introduce an approach to determine users’ home and work locations in order to examine the activity patterns of individuals. To infer the SES of individuals, we incorporate the American Community Survey (ACS) data. Using Twitter data for Washington, DC, we analyzed the activity patterns of Twitter users with different SESs. The study clearly demonstrates that while SES is highly important, the urban spatial structure, particularly where jobs are mainly found and the geographical layout of the region, plays a critical role in affecting the variation in activity patterns between users from different communities.