Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. B. Pierce is active.

Publication


Featured researches published by R. B. Pierce.


Journal of Applied Remote Sensing | 2008

Intercomparison of near-real-time biomass burning emissions estimates constrained by satellite fire data

Jassim A. Al-Saadi; Amber Jeanine Soja; R. B. Pierce; James J. Szykman; Christine Wiedinmyer; Louisa Kent Emmons; Shobha Kondragunta; Chieko Kittaka; Todd K. Schaack; Kevin West Bowman

We compare biomass burning emissions estimates from four different techniques that use satellite based fire products to determine area burned over regional to global domains. Three of the techniques use active fire detections from polar-orbiting MODIS sensors and one uses detections and instantaneous fire size estimates from geostationary GOES sensors. Each technique uses a different approach for estimating trace gas and particulate emissions from active fires. Here we evaluate monthly area burned and CO emission estimates for most of 2006 over the contiguous United States domain common to all four techniques. Two techniques provide global estimates and these are also compared. Overall we find consistency in temporal evolution and spatial patterns but differences in these monthly estimates can be as large as a factor of 10. One set of emission estimates is evaluated by comparing model CO predictions with satellite observations over regions where biomass burning is significant. These emissions are consistent with observations over the US but have a high bias in three out of four regions of large tropical burning. The large-scale evaluations of the magnitudes and characteristics of the differences presented here are a necessary first step toward an ultimate goal of reducing the large uncertainties in biomass burning emission estimates, thereby enhancing environmental monitoring and prediction capabilities.


Journal of Geophysical Research | 2006

Radiative effect of clouds on tropospheric chemistry in a global three‐dimensional chemical transport model

Hongyu Liu; J. H. Crawford; R. B. Pierce; Peter M. Norris; Steven Platnick; G. Chen; Jennifer A. Logan; Robert M. Yantosca; Mat J. Evans; Chieko Kittaka; Yan Feng; Xuexi Tie

photochemistry above (below) clouds. The global mean photolysis frequencies for J[O 1 D] and J[NO2] in the troposphere change by less than 5% because of clouds; global mean O3 concentrations in the troposphere increase by less than 5%. This study shows tropical upper tropospheric O3 to be less sensitive to the radiative effect of clouds than previously reported (� 5% versus � 20–30%). These results emphasize that the dominant effect of clouds is to influence the vertical redistribution of the intensity of photochemical activity while global average effects remain modest, again contrasting with previous studies. Differing vertical distributions of clouds may explain part, but not the majority, of these discrepancies between models. Using an approximate random overlap or a maximum-random overlap scheme to take account of the effect of cloud overlap in the verticalreducestheimpactofcloudsonphotochemistrybutdoesnotsignificantlychangeour results with respect to the modest global average effect.


Geophysical Research Letters | 2015

Central American biomass burning smoke can increase tornado severity in the U.S.

Pablo E. Saide; R. B. Pierce; J. A. Otkin; T. K. Schaack; Andrew K. Heidinger; A. da Silva; M. Kacenelenbogen; J. Redemann; G. R. Carmichael

Tornadoes in the Southeast and central U.S. are episodically accompanied by smoke from biomass burning in central America. Analysis of the 27 April 2011 historical tornado outbreak shows that adding smoke to an environment already conducive to severe thunderstorm development can increase the likelihood of significant tornado occurrence. Numerical experiments indicate that the presence of smoke during this event leads to optical thickening of shallow clouds while soot within the smoke enhances the capping inversion through radiation absorption. The smoke effects are consistent with measurements of clouds and radiation before and during the outbreak. These effects result in lower cloud bases and stronger low-level wind shear in the warm sector of the extratropical cyclone generating the outbreak, two indicators of higher probability of tornadogenesis and tornado intensity and longevity. These mechanisms may contribute to tornado modulation by aerosols, highlighting the need to consider aerosol feedbacks in numerical severe weather forecasting.


Journal of Applied Meteorology and Climatology | 2008

Air Quality Forecast Verification Using Satellite Data

Shobha Kondragunta; Pius Lee; J. McQueen; Chieko Kittaka; Ana Prados; Pubu Ciren; I. Laszlo; R. B. Pierce; Raymond M. Hoff; James J. Szykman

Abstract NOAA’s operational geostationary satellite retrievals of aerosol optical depths (AODs) were used to verify National Weather Service developmental (research mode) particulate matter (PM2.5) predictions tested during the summer 2004 International Consortium for Atmospheric Research on Transport and Transformation/New England Air Quality Study (ICARTT/NEAQS) field campaign. The forecast period included long-range transport of smoke from fires burning in Canada and Alaska and a regional-scale sulfate event over the Gulf of Mexico and the eastern United States. Over the 30-day time period for which daytime hourly forecasts were compared with observations, the categorical (exceedance defined as AOD > 0.55) forecast accuracy was between 0% and 20%. Hourly normalized mean bias (forecasts − observations) ranged between −50% and +50% with forecasts being positively biased when observed AODs were small and negatively biased when observed AODs were high. Normalized mean errors are between 50% and 100% with t...


Journal of Geophysical Research | 2002

Large‐scale chemical evolution of the Arctic vortex during the 1999/2000 winter: HALOE/POAM III Lagrangian photochemical modeling for the SAGE III—Ozone Loss and Validation Experiment (SOLVE) campaign

R. B. Pierce; Jassim A. Al-Saadi; T. D. Fairlie; Murali Natarajan; V. L. Harvey; William L. Grose; James M. Russell; Richard M. Bevilacqua; Stephen D. Eckermann; D. W. Fahey; P. J. Popp; Erik Charles Richard; R. M. Stimpfle; Geoffrey C. Toon; C. R. Webster; J. W. Elkins

Abstract : The LaRC Lagrangian Chemical Transport Model (LaRC LCTM) is used to simulate the kinematic and chemical evolution of an ensemble of trajectories initialized from Halogen Occultation Experiment (HALOE) and Polar Ozone and Aerosol Measurement (POAM) III atmospheric soundings over the SAGE III-Ozone Loss and Validation Experiment (SOLVE) campaign period. Initial mixing ratios of species which are not measured by HALOE or POAM III are specified using sunrise and sunset constituent CH(4) and constituent PV regressions obtained from the LaRC IMPACT model, a global three dimensional general circulation and photochemical model. Ensemble averaging of the trajectory chemical characteristics provides a vortex-average perspective of the photochemical state of the Arctic vortex. The vortex-averaged evolution of ozone, chlorine, nitrogen species, and ozone photochemical loss rates is presented. Enhanced chlorine catalyzed ozone loss begins in mid-January above 500 K, and the altitude of the peak loss gradually descends during the rest of the simulation. Peak vortex averaged loss rates of over 60 ppbv/day occur in early March at 450 K. Vortex averaged loss rates decline after mid- March. The accumulated photochemical ozone loss during the period from 1 December 1999 to 30 March 2000 peaks at 450 K with net losses of near 2.2 ppmv. The predicted distributions of CH4, O(3), denitrification, and chlorine activation are compared to the distributions obtained from in situ measurements to evaluate the accuracy of the simulations. The comparisons show best agreement when diffusive tendencies are included in the model calculations, highlighting the importance of this process in the Arctic vortex. Sensitivity tests examining the large-scale influence of orographically generated gravity wave temperature anomalies are also presented. Results from this sensitivity study show that mountain-wave temperature perturbations contribute an additional 2-8% O(3) loss during the 1999/2000 winter.


Journal of Geophysical Research | 2009

Sensitivity of photolysis frequencies and key tropospheric oxidants in a global model to cloud vertical distributions and optical properties

Hongyu Liu; J. H. Crawford; David B. Considine; Steven Platnick; Peter M. Norris; Bryan N. Duncan; R. B. Pierce; G. Chen; Robert M. Yantosca

vertical overlap for clouds, the model calculated changes in global mean OH (J(O 1 D), J(NO2)) due to the radiative effects of clouds in June are about 0.0% (0.4%, 0.9%), 0.8% (1.7%, 3.1%), and 7.3% (4.1%, 6.0%) for GEOS1-STRAT, GEOS-3, and GEOS-4, respectively; the geographic distributions of these quantities show much larger changes, with maximum decrease in OH concentrations of � 15–35% near the midlatitude surface. The much larger global impact of clouds in GEOS-4 reflects the fact that more solar radiation is able to penetrate through the optically thin upper tropospheric clouds, increasing backscattering from low-level clouds. Model simulations with each of the three cloud distributions all show that the change in the global burden of ozone due to clouds is less than 5%. Model perturbation experiments with GEOS-3, where the magnitude of 3-D CODs are progressively varied from � 100% to 100%, predict only modest changes (<5%) in global mean OH concentrations. J(O 1 D), J(NO2), and OH concentrations show the strongest sensitivity for small CODs and become insensitive at large CODs owing to saturation effects. Caution should be exercised not to use in photochemical models a value for cloud single scattering albedo lower than about 0.999 in order to be consistent with the current knowledge of cloud absorption at the ultraviolet wavelengths.


Journal of Geophysical Research | 2017

Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphere‐to‐troposphere transport and biomass burning: Simultaneous ground‐based lidar and airborne measurements

Shi Kuang; Michael J. Newchurch; Matthew S. Johnson; Lihua Wang; John F. Burris; R. B. Pierce; Edwin W. Eloranta; Ilana B. Pollack; Martin Graus; Joost A. de Gouw; Carsten Warneke; Thomas B. Ryerson; Milos Z. Markovic; John S. Holloway; Arastoo Pour-Biazar; Guanyu Huang; Xiong Liu; Nan Feng

Stratosphere-to-troposphere transport (STT) and biomass burning (BB) are two important natural sources for tropospheric ozone that can result in elevated ozone and air-quality episode events. High-resolution observations of multiple related species are critical for complex ozone source attribution. In this article, we present an analysis of coinciding ground-based and airborne observations, including ozone lidar, ozonesonde, high spectral resolution lidar (HSRL), and multiple airborne in situ measurements, made on 28 and 29 June 2013 during the Southeast Nexus field campaign. The ozone lidar and HSRL reveal detailed ozone and aerosol structures as well as the temporal evolution associated with a cold front passage. The observations also captured two enhanced (+30 ppbv) ozone layers in the free troposphere (FT), which were determined from this study to be caused by a mixture of BB and stratospheric sources. The mechanism for this STT is tropopause folding associated with a cutoff upper level low-pressure system according to the analysis of its potential vorticity structure. The depth of the tropopause fold appears to be shallow for this case compared to events observed in other seasons; however, the impact on lower tropospheric ozone was clearly observed. This event suggests that strong STT may occur in the southeast United States during the summer and can potentially impact lower troposphere during these times. Statistical analysis of the airborne observations of trace gases suggests a coincident influence of BB transport in the FT impacting the vertical structure of ozone during this case study.


Journal of Geophysical Research | 2017

An Assessment of Ground Level and Free Tropospheric Ozone Over California and Nevada

Emma L. Yates; Matthew S. Johnson; Laura T. Iraci; Ju-Mee Ryoo; R. B. Pierce; P. D. Cullis; Warren J. Gore; M. A. Ives; Bryan J. Johnson; Thierry Leblanc; J. E. Marrero; Chance W. Sterling; Tomoaki Tanaka

Increasing free tropospheric ozone (O3), combined with the high elevation and often deep boundary layers at western US surface stations, poses challenges in attaining the more stringent 70 ppb O3 National Ambient Air Quality Standard. As such, use of observational data to identify sources and mechanisms that contribute to surface O3 is increasingly important. This work analyzes surface and vertical O3 observations over California and Nevada from 1995 to 2015. Over this period, the number of high O3 events (95th percentile) at US EPA CASTNET sites has decreased during summer, as a result of decreasing US emissions. In contrast, an increase in springtime 5th percentile O3 indicates a general increase of baseline O3. During 2012 there was a peak in exceedances and in the average spring-summer O3 mixing ratios at CASTNET sites. GEOS-Chem results show that the surface O3 attributable to transport from the upper troposphere and stratosphere were increased in 2013 compared to 2012, highlighting the importance of measurements aloft. Vertical O3 measurements from aircraft, ozonesondes and lidar show distinct seasonal trends, with a high percentage of elevated O3 laminae (O3 >70 ppb, 3-8 km) during spring and summer. Analysis of the timing of high O3 surface events and correlation between surface and vertical O3 data is used to discuss varying sources of western US surface O3.


Remote Sensing of Clouds and the Atmosphere XVIII; and Optics in Atmospheric Propagation and Adaptive Systems XVI | 2013

Application of MAIAC high spatial resolution aerosol retrievals over Po Valley (Italy)

Barbara Arvani; R. B. Pierce; Alexei Lyapustin; Yujie Wang; Sergio Teggi; Grazia Ghermandi

The Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) data retrieved at 0:55 μm with spatial resolutions of 10 km and 1 km AOD have been considered in this work. The 10 km resolution of MODIS AOD product is from the MODIS Collection 5:1 dark target retrieval and the 1 km resolution retrieval is from the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. We evaluate ability of these two products to characterize the spatial distribution of aerosols in urban areas through comparison with surface PM10 measurements. The Po Valley area (northern Italy) is considered in this study since urban air pollution is an important concern. Population and industrial activities are located in a large number of urban areas distributed within the valley. The 10 km spatial resolution of MODIS AOD product is considered too large for air quality studies at the urban scale. Using MAIAC data at 1 km, we examine the relationship between PM10 concentrations, AOD, and AOD normalized by Planetary Boundary Layer (PBL) depths obtained from NCEP global analysis, for year 2012 over the Po Valley. Results show that the MAIAC retrieval provides a high resolution depiction of the AOD within the Po Valley and performs nearly as well in a statistical sense as the standard MODIS retrieval during the time period considered. Results also show that normalization by the analyzed PBL depth to obtain an estimate of the mean boundary layer extinction is needed to capture the seasonal cycle of the observed PM10 over the Po Valley.


Journal of Geophysical Research | 2008

CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long‐range transport

Zhaoyan Liu; Ali H. Omar; Mark A. Vaughan; Johnathan W. Hair; Chieko Kittaka; Yongxiang Hu; Kathleen A. Powell; Charles R. Trepte; David M. Winker; Chris A. Hostetler; Richard A. Ferrare; R. B. Pierce

Collaboration


Dive into the R. B. Pierce's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack E. Dibb

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Weinheimer

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Todd K. Schaack

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David G. Streets

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory J. Tripoli

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge