R. Biener
Esslingen University of Applied Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Biener.
Journal of Biotechnology | 2010
R. Biener; Anne Steinkämper; Johannes Hofmann
In order to achieve maximum productivity of recombinant proteins in Escherichia coli high cell density cultivation (HCDC) strategies have been the subject of many studies. The aim of this work was the application of calorimetric methods to HCDC. The specific growth rate of a recombinant E. coli strain producing green fluorescent protein (GFP) was controlled during fed-batch cultivations by estimating the specific growth rate from the measured heat flow produced by the cells. For the cultivation a standard 30 l laboratory bioreactor was used, which was extended in such a way that heat balancing is possible. The feed rate was adjusted by an adaptive controller such that the specific growth rate was kept on the desired set point value. On the basis of experimental investigations with a recombinant E. coli strain using glucose as limiting C-source it was demonstrated that the specific growth rate can be kept on a given set point value and biomass concentrations of up to 120 g l(-1) can be obtained, reproducibly.
Journal of Biotechnology | 2012
R. Biener; Anne Steinkämper; Thomas Horn
The specific growth rate of a Saccharomyces cerevisiae strain with glucose as limiting C-source was estimated from the measured heat flow produced by the cells. For the cultivation a standard 30 l laboratory bioreactor was used, which was extended in such a way that heat balancing is possible. The feed rate was adjusted by a feedforward/feedback controller such that the specific growth rate was kept on the desired set-point value. On the basis of experimental investigations it was demonstrated that the specific growth rate can be controlled at a given set point value below the critical value to prevent the production of growth-inhibitory ethanol due to the Crabtree effect. With this control strategy high biomass concentrations of more than 110 g l(-1) can be obtained.
Journal of Biotechnology | 2009
Nina Wagner; Corina Oßwald; R. Biener; Dirk Schwartz
Manipulation of secondary metabolite production in the rare actinomycete Actinoplanes friuliensis, the producer of the lipopeptide antibiotic friulimicin, is hampered by the lack of sophisticated genetic tools. Since no expression vectors have been developed from endogenous Actinoplanes plasmids and expression signals, engineering of antibiotic biosynthesis relies on the use of vector systems derived from Streptomyces. While PhiC31 derived vectors were shown to integrate efficiently into the chromosome of Actinoplanes, information on promoter activity is missing. The manuscript describes the investigation of several different promoter systems which are widely used in Streptomyces in A. friuliensis by promoter probe experiments using eGFP as a reporter. These experiments indicated that promoter strength in A. friuliensis did not correlate to activity in Streptomyces lividans. The ermE* promoter regarded as one of the strongest promoter in Streptomyces has only low activity in A. friuliensis. In contrast, the promoter of the apramycin resistance gene aac(3)IV, originating from the Gram-negative Escherichia coli had the highest activity. By real-time RT-PCR experiments the transcription activity of ermE* promoter in comparison to a native promoter of the friulimicin biosynthetic gene cluster was analysed. This confirmed the results of the promoter probe experiments that indicated quite weak promoter activity of P-ermE* in Actinoplanes.
Journal of Biotechnology | 2014
Christian Rückert; Rafael Szczepanowski; Andreas Albersmeier; Alexander Goesmann; Nicole Fischer; Anne Steinkämper; Alfred Pühler; R. Biener; Dirk Schwartz; Jörn Kalinowski
Actinoplanes friuliensis HAG 010964 (DSM 7358) was isolated from a soil sample from the Friuli region in Italy and characterized as a producer of the antibiotic friulimycin. The complete genome sequence includes genomic information of secondary metabolite biosynthesis and of its lifestyle. Genbank/EMBL/DDBJ Accession Nr: CP006272 (chromosome).
Journal of Biotechnology | 2009
Susanne Nolden; Nina Wagner; R. Biener; Dirk Schwartz
The rare actinomycete Actinoplanes friuliensis is the producer of the lipopeptide antibiotic friulimicin, which is active against a broad range of Gram-positive bacteria such as methicillin-resistant Enterococcus spec. and Staphylococcus aureus (MRE, MRSA) strains. Friulimicin consists of a decapeptide core and an acyl residue linked to an exocyclic amino acid. The complete biosynthetic gene cluster consisting of 24 open reading frames was characterized by sequence analysis and the transcription units were subsequently determined by RT-PCR experiments. In addition to several genes for biosynthesis, self-resistance and transport four different regulatory genes (regA, regB, regC and regD) were identified within the cluster. To analyse the role of the pathway-specific regulatory protein RegA in the friulimicin biosynthesis, the corresponding gene was inactivated resulting in friulimicin non-producing mutants. Furthermore, several protein-binding sites within the friulimicin gene cluster were identified by gel retardation assays. By real-time RT-PCR experiments, it was shown that the majority of the friulimicin biosynthetic genes is positively regulated by RegA.
Journal of Biotechnology | 2015
Anne Steinkämper; Joachim Schmid; Dirk Schwartz; R. Biener
Actinoplanes friuliensis is a rare actinomycete which produces the highly potent lipopeptide antibiotic friulimicin. This lipopeptide antibiotic is active against a broad range of multi-resistant gram-positive bacteria such as methicillin-resistant Enterococcus sp. and Staphylococcus aureus (MRE, MRSA) strains. Antibiotic biosynthesis and regulation in actinomycetes is very complex. In order to study the biosynthesis of these species and to develop efficient production processes, standardized cultivation conditions are a prerequisite. For this reason a chemically defined production medium for A. friuliensis was developed. With this chemically defined medium it was possible to analyze the influence of medium components on growth and antibiotic biosynthesis. These findings were used to develop process strategies for friulimicin production. The focus of the project presented here was to develop cultivation strategies which included fed-batch and continuous cultivation processes. In fed-batch processes, volumetric productivities for friulimicin of 1-2 mg/l h were achieved. In a perfusion process, a very simple cell retention system, which works via sedimentation of the mycelial cell pellets, was used. With this system, stable continuous cultivations with cell retention were dependent on the dilution rate. With a dilution rate of 0.05 h(-1), cell retention worked well and volumetric productivity of friulimicin was enhanced to 3-5 mg/l h. With a higher dilution rate of 0.1 h(-1), friulimicin production ceased because cell retention was not possible any longer with this simple cell retention system. In order to support process development, cultivation data were used to characterize metabolic fluxes in the developed friulimicin production processes.
Biospektrum | 2017
Johannes Hofmann; Ralf Masuch; Andreas Wolf; Anne Steinkämper; R. Biener
A new approach of MIR transmission spectroscopy for online monitoring of substrates and metabolites during a cultivation process is described. For the quantitative analysis a calibration-free predictive algorithm has been developed. This method allows the simultaneous determination of substrates such as glucose, ammonia, phosphate, sulphate and proline and of by-products such as acetate, lactate, succinate and pyruvate.
Journal of Biotechnology | 2010
Nina Wagner; Anne Steinkämper; R. Biener; Dirk Schwartz
New Biotechnology | 2012
N. Fischer; Nina Wagner; R. Biener; Dirk Schwartz
New Biotechnology | 2012
A. Steinkämper; A. Wolf; R. Masuch; J. Hofmann; K. Mauch; J. Schmid; Dirk Schwartz; R. Biener