R. C. Meyer
Scottish Crop Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. C. Meyer.
Molecular Breeding | 1997
D. Milbourne; R. C. Meyer; J. E. Bradshaw; E. Baird; Nicky Bonar; Jim Provan; W. Powell; Robbie Waugh
The application of AFLPs, RAPDs and SSRs to examine genetic relationships in the primary northwestern European cultivated potato gene pool was investigated. Sixteen potato cultivars were genotyped using five AFLP primer combinations, 14 RAPD primers, and 17 database-derived SSR primer pairs. All three approaches successfully discriminated between the 16 cultivars using a minimum of one assay. Similarity matrices produced for each marker type on the basis of Nei and Li coefficients showed low correlations when compared with different statistical tests. Dendrograms were produced from these data for each marker system. The usefulness of each system was examined in terms of number of loci revealed (effective multiplex ratio, or EMR) and the amount of polymorphism detected (diversity index, or DI). AFLPs had the highest EMR, and SSRs the highest DI. A single parameter, marker index (MI), which is the product of DI and EMR, was used to evaluate the overall utility of each marker system. The use of these PCR-based marker systems in potato improvement and statutory applications is discussed.Abbreviations: PCR, polymerase chain reaction; AFLP, amplified fragment length polymorphism; RAPD, randomly amplified polymorphic DNA; DNA, deoxyribonucleic acid; EMR, effective multiplex ratio; DI, diversity index; MI, marker index; RFLP, restriction fragment length polymorphism.
Molecular Genetics and Genomics | 1998
D. Milbourne; R. C. Meyer; A. J. Collins; Luke Ramsay; Christiane Gebhardt; Robbie Waugh
Solanum tuberosum L. DNA sequences containing simple sequence repeat (SSR) motifs were extracted from the EMBL database, cDNA and selectively enriched small-insert DNA libraries. Enrichment was achieved using either triplex affinity capture or single-strand hybridisation selection. One hundred and twelve primer pairs which successfully amplified products of the correct size from potato DNA were ultimately designed and synthesised. Ninety-eight of these revealed length polymorphisms in a panel of four diploid and two tetraploid clones, in agreement with the high information content of this class of markers which has been found in other species. All of the markers were assigned a quality score of 1–5 based on their potential usefulness. Eighty-nine loci from 65 of the primer pairs were located on two genetic linkage maps of potato by segregation analysis of the amplified alleles. Fifty-two of the SSRs were clearly single locus. The maps were aligned using 23 SSR primer pairs and 13 RFLP loci mapped in both populations. The markers described constitute a class which should replace Restriction Fragment Length Polymorphisms (RFLP) as the markers of choice for future genetic studies in potato. The sequences of the primers, together with other information on these markers are provided.
Theoretical and Applied Genetics | 1999
Glenn J. Bryan; J. McNicoll; Gavin Ramsay; R. C. Meyer; W. S. De Jong
Abstract PCR-based markers were developed from mononucleotide simple-sequence repeats in the chloroplast genome of Nicotiana tabacum and applied to the analysis of genetic diversity. These markers were found to detect high levels of polymorphism at three taxonomic levels in Solanaceous plants. Of 36 chloroplast loci examined, 26 show some degree of polymorphism among potato accessions. Among a set of 30 tetraploid potato cultivars it is apparent that a single chloroplast haplotype is prevalent, presumably a result of the widespread use as a female parent of the imported US cultivar Rough Purple Chili in the latter half of the 19th century. Nonetheless, there is considerable chloroplast diversity in the cultivated potato, and it is clear that a large proportion of this variability has arisen through the use of wild or primitive cultivated species of potato in introgression programmes. This variability should be used in future breeding programmes. An examination of single accessions from 24 potato species, as well as representatives from tobacco and other members of the Solanaceae, reveals high levels of inter-specific chloroplast DNA variation. These data, and the ease of use and potential for multiplexing of these markers, suggest that cpSSRs will be of great utility in population genetics, germplasm management, evolutionary and phylogenetic studies as well as in, the analysis of material from introgression and somatic-fusion experiments. Interestingly, the polymorphism arising from one of the more-polymorphic chloroplast loci examined, does not originate solely from the SSR, and is due to variation in the copy number of two tandemly arrayed sequence elements.
Molecular Breeding | 1999
A. J. Collins; D. Milbourne; Luke Ramsay; R. C. Meyer; Catherine Chatot-Balandras; Petra Oberhagemann; W. De Jong; Christiane Gebhardt; Eric Bonnel; Robbie Waugh
Field resistance to Phytophthora infestans, the causal agent of foliage and tuber blight in cultivated potatoes, earliness (maturity) and vigour, were examined in a diploid segregating potato population grown in replicated trials over three consecutive growing seasons. A genetic linkage map of this population was constructed in parallel using PCR-based SSR, AFLP and CAPS markers. Analysis of the trait scores alongside the marker segregation data allowed the identification of regions of the genome which were significantly correlated with components of the respective characters. The most significant associations for all four traits were with marker alleles on potato linkage group V originating from the male (susceptible) parent. In the case of foliage resistance to late blight, the positions of the majority of the effects, which were located on eleven of the twelve potato linkage groups, have been detected in previous [16] and parallel studies [21]. The absence of Solanum demissum-derived R genes for hypersensitive response to late blight and the co-localisation of QTL for resistance, vigour and earliness suggest that developmental and/or physiological factors play a major role in determining the level of foliage resistance in this population. In contrast with previous findings, a negative correlation was found between foliage and tuber blight resistance.
Theoretical and Applied Genetics | 1998
J. E. Bradshaw; Christine A. Hackett; R. C. Meyer; D. Milbourne; James W. McNicol; Mark S. Phillips; Robbie Waugh
Abstract Seventy eight clones from the cross between SCRI clone 12601ab1 and cv Stirling were used to explore the possibility of genetical linkage analysis in tetraploid potato (Solanum tuberosum subsp. tuberosum). Clone 12601ab1 had quantitative resistance to Globodera pallida Pa2/3 derived from S. tuberosum subsp. andigena. The strategy adopted involved identifying single- (simplex) and double- (duplex) dose AFLP markers in the parents from segregation ratios that could be unambiguously identified in their offspring, detecting linkage between a marker and a putative quantitative trait locus (QTL) for resistance, and placing the QTL on the linkage map of markers. The numbers of scorable segregating markers were 162 simplex ones present only in 12601ab1, 87 present in Stirling, and 32 present in both; and 72 duplex markers present only in 12601ab1 and 45 present in Stirling. The total map length was 990.9 cM in 12601ab1 and 484.6 cM in Stirling. A QTL with a resistance allele present in double dose (QQqq) in 12601ab1 was inferred from the associations between resistance scores (square root of female counts) and two duplex markers linked in coupling, which, in turn, were linked in coupling to four simplex markers also associated with resistance, but to a lesser degree. The largest marker class difference was the one for the duplex marker P61M34=15. It accounted for 27.8% of the phenotypic variance in resistance scores, or approximately 30% of the genotypic variance. Subsequently, this duplex marker was found to be linked in coupling with a duplex SSR allele Stm3016=a, whose locus was shown to be on chromosome IV in a diploid reference mapping population. The other QTLs for resistance segregating in the progeny were not identified for one or more of the following reasons: the markers did not cover the whole of the genome, there were unfavourable repulsion linkages between the QTLs and markers, or the gene effects were not large enough to be detected in an experiment of the size conducted. It is concluded that prospects appear good for detecting QTLs and using marker-assisted selection in a tetraploid potato breeding programme, provided that, in future, the population size is increased to over 250 and more SSR markers are used to complement the AFLPs; the same is likely to be true for other autotetraploid crops.
Genetics Research | 2001
Christine A. Hackett; R. C. Meyer; W. T. B. Thomas
Many studies of QTL locations record several different traits on the same population, but most analyses look at this information on a trait-by-trait basis. In this paper we show how the regression approach to QTL mapping of Haley & Knott (1992) may be extended to a multi-trait analysis via multivariate regression, easily programmed in statistical packages. A procedure for identifying QTL locations using forward selection and bootstrapping is proposed. The method is applied to examine the locations for QTLs for six yield characters (the number of fertile stems, the grain number of the main stem, the main stem grain weight, the single plant yield, the plot yield and the thousand grain weight) in a doubled haploid population of spring barley. Several chromosomal locations with effects on more than one trait are found. The method is also suitable for examining a single trait measured in different years or environments, and is used here to examine data on heading date, a highly heritable trait, and plot yield, a trait with moderate heritability and showing QTL-environment interactions.
Genetics Research | 1998
Christine A. Hackett; J. E. Bradshaw; R. C. Meyer; James W. McNicol; D. Milbourne; Robbie Waugh
A simulation study was performed to investigate methods for mapping single-dose (simplex) and double-dose (duplex) markers, and for identification of homologous chromosomes in an autotetraploid species, and to see how the map accuracy depends on the population size. An initial population of 1000 individuals was simulated, with 30 simplex and 10 duplex markers, and recombination fractions and lod scores were calculated between all pairs of markers. These were used to test the feasibility of mapping the simplex and duplex markers simultaneously. Smaller populations, from 500 to 75 individuals, were then simulated, and the estimates of the pairwise recombination fractions and the derived maps were compared with the true map. It was found that the accuracy of the estimates depended strongly on the type of markers involved, with simplex–simplex coupling pairs being most reliable and simplex–simplex repulsion pairs and duplex–duplex pairs in any configuration but coupling being least reliable. Maps can be assembled using recombination fractions and lod scores from pairs of simplex–simplex markers (coupling and repulsion), duplex–simplex (coupling and repulsion) and duplex–duplex (coupling). The agreement between the map order and the true order was good, although the map distance was generally underestimated at small sample sizes.
Plant Molecular Biology | 1999
Anne Louise Maddison; Peter E. Hedley; R. C. Meyer; Naveed Aziz; Diane Davidson; Gordon C. Machray
The organisation of two invertase genes (invGE and invGF) linked in direct tandem repeat within the potato genome is detailed. The genes exhibit a similar intron/exon structure which differs from previously described plant invertase genes; while intron locations are conserved between the genes, minor differences in exon length are seen. Both genes encode enzymes with putative extracellular location. Biochemical analysis of gene expression showed expression in floral tissues for both genes, with expression of the upstream gene (invGE) also detected in leaf tissue. Promoter sequences from both genes have been fused to the β-glucuronidase (GUS) reporter gene (uidA) and transformed into potato. One promoter-GUS reporter construct was also transformed into tobacco. Histochemical analysis of transgenic lines defined specific expression from the downstream (invGF) promoter in potato and tobacco pollen, with expression first detected in the late uninucleate stage of tobacco microspore development. The invGE promoter determined expression in pollen and other floral tissues, but also at lateral nodes in stem, root and tuber. An association of invertase expression with generative tissue, both in vegetative and sexual modes of growth, is indicated.
Plant Science | 1996
R. C. Meyer; Peter E. Hedley; Robbie Waugh; Gordon C. Machray
Abstract A 4.3 kb genomic clone from potato ( Solanum tuberosum ) cv. Saturna has been isolated which contains the full coding sequence of a protein kinase gene ( Stpk1 ), 1 kb of 3′ sequence, and the first exon of a neighbouring gene encoding a sucrolytic enzyme. An identical organisation could be detected in a genomic clone carrying a gene that encodes a protein kinase homologue in Arabidopsis thaliana (Hayashida et al., Gene, 121 (1992) 325–330). Southern and RT-PCR analyses indicate that Stpk1 is a single copy gene which is expressed throughout the plant with an increase in transcript abundance in leaf after infection with Phytophthora infestans . While comparisons using the deduced amino acid sequence for STPK1 indicate that it is most closely related to cyclic nucleotide-dependent protein kinases, it contains an additional plant-specific insert of 85 amino acids in the catalytic domain.
Molecular Genetics and Genomics | 1998
R. C. Meyer; D. Milbourne; Christine A. Hackett; J. E. Bradshaw; J. W. McNichol; Robbie Waugh